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Abstract.
search fields find the hitting sets of a group of sets. Existiud-
nigues apply to sets of finite elements only. This paper adaethe
computation of the hitting sets of a group of sets whose eftsrare
convex or non-convex, bounded or unbounded continuousnegi
We assume the conflict sets are known and we present a noeetpro
dure, the Continuous Hitting Set algorithm (CHS) for tramsfing
conflict sets of continuous elements into minimal hittintsse

1 Introduction

Many theoretical and practical problems can partly redocantin-
stance of the minimal hitting set problem, or its close vatrthe min-
imum set covering problem. One widely recognized applicgis in
the field of model-based diagnosis [5]. In this approach,stesy is
atuple(COMPS,SD,0BS); COMPS is a finite set of system
componentsS D is the system descriptiod BS is the observation.
A diagnosis is a minimal seb C COM PS such that under the
assumption that all other components are behaving coyrdetex-
plainsthe observation give'D. In the diagnosis communityy is
said to be consistent withD andOBS. This approach to diagnosis
has two steps: (i) a collection of all minimal conflict setscam-
puted; (ii) the conflict sets are transformed into diagno8esonflict
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Many techniques in model-based diagnosis and other reeonditioned upon the component continuous values. Thisdalse

a minimal diagnosis corresponds to a minimal continuousreg\
diagnosis in this context is a set hfcomponents along with a set
of bounded or unbounded regions®f. Existing algorithms are not
designed to find and construct these regions. A naive syrategld
be to apply these algorithms to a collection of conflicts wittected
elements of the continuous lines. However, since the Qitat prob-
lem has a worst case performance that is exponential thetthe
collection of conflicts, this would hardly prove an efficiapproach.
Moreover, many points that belong to the same minimal diagso
would be computed independently.

This paper presents a general computational method fomfindi
the hitting sets of a collection of conflicts with continuattributes.
The algorithm is named CHS for Continuous Hitting Sets. t8tgr
from the classical approach, the proposed solution sesuttigehit-
ting sets in an aggregate space of diagnoses. Similarlyetol#ssi-
cal methods the CHS has both an expansion and a pruning phases
is shown how the pruning phase dominates the computatidfoal. e
Simulation experiments on hundreds of randomly generaieflicts
assess the main properties and the scalability of the CHS.

2 Problem Definition and Solution Approach

sets C COMPS is such that the assumption that all components2-1 ~ Problem Formulation

in s are behaving correctly is not consistent wilv andOBS. A
minimal conflict set is such that it does not contain any otoerflict
set. Reiter showed that the minimal diagnoses are the mihittiag
sets of the collection of minimal conflicts.

Since the beginning of model-based diagnosis, severatitdgms
for computing the hitting sets have been introduced. Mdgtae the
building of a so-called HS-DAG [2] or HS-tree [7] but othepre-
sentations exist [3, 4]. All these techniques transfornflazirsets of
discrete elements into diagnoses. But in many applicatbénsodel-
based diagnosis, the conflicts contain more informatioiis Trifor-
mation includes but is not limited to intervals of possitdéure time
in systems with functional delays, or continuous parametages
found in fault models. For example, in systems with delagsesl
conflicts may involve the same components with differentrestes
of the symptom occurence dates [6].

In this paper, we address step (ii) and assume all minimdlictsn
are given. Each conflict element is a component with boundeu-o
bounded intervals over a continuous line. We assume thersiigle
continuous attribute per component, but this assumptismbanci-
dence on the generality of the presented method. The prolvigm
conflict sets of continuous attributes is that minimal disggs are
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We consider a tupl¢COMPS,SD,0OBS). A componentC'i of
COM PS operates over a continuous limg wherei is the compo-
nent index, and that represents its failure time, or anyrgtheam-
eter or variable value (bounded or unbounded) domain. A icbnfl
set, or conflict for short, is a set of components which carest
have normally altogether according to the observationsa¥geime
componentC'i in a conflicts has a known unidimensional failure
interval I7. It is noted Cirs. To simplify notationsCi; where j

is an integer denoteS'i; ... A conflict of cardinalityk is noted

s = {Cly;, -+ ,Ckpg }. It defines a continuous regiag)f:1 I;
that is a hypercube dk*. A minimal conflict is a conflict that does
not strictly include any other conflict. Reiter proved thahimal di-
agnoses can be computed from minimal conflicts. Each conmpone
in a potential diagnosis belongs to one or more conflicts. "yeas
componenexplains or equivalentlycoversthese conflicts. Given a
collectionS of conflicts a diagnosis of cardinalityis a tuple( D, X)
where D and X are the discrete and continuous diagnosis respec-
tively. They are such thab € COM PS with D = {C1,--- ,Ck}
andX C ®f:1[ﬂsesff I7], whereS; C S is the subset of conflicts
that areexplainedby Ci. The inclusion is a consequence of having
conflicts with overlapping continuous regions. This coiatis diag-
noses upon regions that are smaller than the failure ifteneach
conflict.



Example 1. Consider two conflicts; = {C11,C2+,41,C31},
s2 = {C1;,41,021,C41}, 1 > 0,72 > 0. The six diagnoses
are

(D1, X1) = (Cl,21 € [r1 + 1, 400])
(DQ,XQ) = (C2,I2 S [TQ + 1,-|—OOD
(Dg,Xg) = ({C’l,CQ},:cl S [1,’7’1 + 1[UIE2 S [1,7’2 + 1[)
(D4,X4) = ({01,04},:101 € [1,7’1 + 1[UCC4 € [1,+OO[)
(Ds, Xs5) = ({C3,C2},z2 € [1, 72 + 1[Uz3 € [1, +00[)

[

(Dﬁ,Xﬁ) = ({03, C4},:E3 € 1,-|—OO[U$4 S [1,+OO[).

withzy € [1, 71 + 1[C [1, +o0[, z2 € [1, 72 + 1[C [1, +o0].

2.2 Solution Approach
2.2.1 Hitting set algorithm

A hitting set of a collection of sets is a set intersectinggeet of this
collection. Minimal hitting sets of a collection of minimebnflicts
yield the minimal diagnoses. An incremental algorithm toeyate
all the minimal hitting sets based on a set of conflicts wagioaily

proposed by [5], then corrected by [2]. This algorithm gigseseans
to compute diagnoses incrementally, under the permanatitds-

sumption.

The diagnosis algorithm builds a Hitting-Set tree (HS-rae
which all the nodes but leaves are labelled by a conflict setekch
elementC in the conflict label of node:, an edge labelled joins
n to a successor nodél (n) is defined as the set of edge labels on
the path fronm to the root node. The HS-tree is built by considering
every conflict in arbitrary order. Every new conflict is cormgzhto
every leaf of the HS-tree, and some new leaves are built #ssary.
The resulting HS-tree is pruned for redundant or subsumeektte
before the next conflict is considered. Pruned leaves acetsdie
closed. At the end of the diagnosis procedure, the minintéhpi
sets, and hence the minimal diagnoses that explain thens'gstas-
behaviors, are given by the set of edge lal#élg) associated to the
open leaves of the HS-tree.

2.2.2 Continuous hitting sets

The original hitting set algorithm considers conflict setishwdis-
crete elements only. It looks for singletons in each conflatt The
algorithm cannot condition the diagnoses upon the diffecentin-
uous failure points of a component. Doing this significaetijarges
the number of diagnoses. It follows that the difficulty we e
in this paper is the potentially huge size of the space ofritiags
over continuous regions. The reason for this size is theende of
continuous variables. The hitting set algorithm is expoiaéim the
number of conflict elements so the number of potential diagads
staggering.

Underlying the diagnoses are the conflicts, each being mqala
by the failure of a component in certain regions of its cambims
line. It follows that the dimension of the continuous spacthe total
number of different components in the set of conflicts. Inegahwe
assume the continuous space dimension to be equal to theenab
components in the system. The challenge is thus to applyitiiregh
set algorithm to this continuous state-space. Our solutaddress
this issue is to search for minimal diagnoses ineggregate space

3 Generating Diagnoses from Conflicts with
Continuous Elements

A simple way of understanding the Continuous Hitting Set 8H
algorithm is as a variant of the HS algorithm where candidifg-
noses with identical discrete elements are expanded immnuniEhe
main difference with the HS is twofold:

e The CHS produces a DAG instead of a tree.

e Nodes are often simultaneously a leaf and a node in the antefi
the DAG. This happens when a part of the aggregated diagnoses
do explain all conflicts, while another part does not.

In the standard HS-tree, a single diagnosis is associatddeach
node. In the CHS, multiple diagnoses are associated withhglesi
node.

3.1 Data Structures

The main data structure represents a ned&iven a set of conflicts
S, it contains:

e AdiagnosisH (n) that is a set ok,, edge labels, i.e. components.
e A region X, of continuous diagnosis elements. It represents the
continuous lines of the componentsfif(n), X,, C R*.

Openy,(.) — {0,1}: the Openfunction. For eache € X,
Openy,(z) indicates whethefn, z) explains all conflicts inS.
The open region of. is noted(2,, = {z € X,|Open,(z) = 1}.

A diagnosis is either opened or closed. Note that we donérref
to open or closed nodes; instead we refer to diagnoses as=ici
with nodes as being open or closed.

on(.,.) theexplanation functionForz € X,, ands € S, 0, (s, x)
indicates whethes is explained by(n, ). Formally,

on(s,z) = {

3.2 The CHS algorithm

Algorithm 1 presents the main procedure.

1 if 3Ci st.Ci e sN H(n) withz € I7,
—1 otherwise.

@)

3.2.1 Expansion (lines 9to 12):

For a noder and a conflicts:

An(s,x) = {

is the set of discrete conflict elements that eapand(n, =). At each
iteration, CHS expands a diagnosis, x) if it doesn’t explain the
conflict s. An important distinction between HS and CHS is that in
the latter, nodes are often partially expanded. This meanalicon-
flicts are explained by some diagnogesz) of noden. The catch is
that only those(n, ) that do not explain all conflicts are expanded,
and closed after expansion.

{CeslC¢Hn)}
0

if 6n(s,2) =—1
otherwise

@)

of diagnoseghat is represented by a directed acyclic graph (DAG)3_2_2 Computing the explanation functions (lines 10 & 4):

in which there is a node for each potential diagnosis. Inrotlwds,
each node of our DAG represents a continuous region in wiieh t
discrete diagnosis element is the same.

Each newly expande(h, ) must be updated. This consists in re-
computing its explanation function (Egn (1)).



1: Root node such thaf (Root) = {} andQreo: = RM, for M

components i D. 1 2 3
2: for all conflict setss € S do -/ H \E
. forall (n,z) such thaODpen, (x) = 1 do . . .

3
4: if 5n(37$) = 1then Q1 = {z1 21} Q2 = {@z 2 72 +1} Q3 = {z3 2 1}
5 For all C € H(n) N s, add the pair(n,z) to (a) Expansion of.
oldleave$§C].
6: else
7: forall Crs € sdo Root
8: if An(s,x) containsC thgn _ o1 02 3
9: Expand(n, ) by adding an edge labelled wittl
and successor aggregated nofles =’ = (z,y))
withy € I°. O — (o9 > 19 + 1)
10: Computed,, (s,z’), open / closgn’,z') accord-  ©1=tmizm{H o
|ng|y C2 C4 Cl C2 (4
11: Add the pair(n/, z) to newleavel’]. ‘ \ E/ ‘ E
12: Close the expandeh, ).
13: forall C'insdo o) n
14: for all leaf (n, z) of newleavelg”] do Q= Qs = Qg = Q= Qg
15: if H(n) containsH (n') and),, contains(2,,, for some| ' 7L, U s e Jiaaty SRt
(n',z") in oldleave§C] then
16: Close(n, x).

Algorithm 1: CHS algorithm.

3.2.3 Opening & closing of continuous regions (line 10): Root

The algorithm proceeds by leaving open the regions of théiren a1 2 3

ous space th_at_ explain all conflicts, and by clos_lng the etH&imi-
larly to the original HS, the CHS has an expansion phase andra p .

ing phase. In the expansion phage, =) is closed if it has been o) = ¢z >~ +i} o s lez il

expanded, or is st. 6,(s,x) = —1 and A,(s,z) = {}. In the c2 04 )

pruning phase(n, x) is closed if it is subsumed by some other node
(n’, ") such thatd (n') C H(n) andQ,, C Q,. For every new
conflict s and every element’ of the conflict, the algorithm builds

two lists,newleaves]'] andoldleaves{’], which are then compared. o

Closed regions of a given node cannot be reopened. This # {1 <o 4<<? RIS
ily seen since closed regions contain points that do notagxlll ST
conflicts. Therefore these regions are expanded into neesnddhe

(n, z) that remain opened after all conflicts$rhave been processed (c) Pruning after expansion b.
are the minimal diagnoses.

Figure 1. Expansion and pruning.

3.2.4 Example:

Consider the two conflicts of example 1. Figure 1(a) pictutes m
CHS structure after the expansion @f. Expansion ofs; leads to o1 92 c1 c2

the closing of the subregioh < z; < 71 + 1 of node 1, and

closes node 3, see Figure 1(b). Node 2 is unchanged sincestje
4,02(s,z2) = 1forall openzs > 72 + 1, leaving A2 (.) empty. The Q1 =1[0,1] Q2 =[0,1] o2 C1
pruning phase closes nodes and regions. A nodeclosed when-

ever for allz, Q,,(z) = @ for all z € X,,. Node 6 is closed as it is
subsumed by node 1. Similarly, node 2 subsumes some coasnuo

regions of nodes 4 and 7, that are thus closed. Node inckision Sl &L ﬂ}zuﬁoﬁ%} LR rEd st

represented with dashed edges on Figure 1(c).
Figure 2. CHS produces a DAG. Left: expansion of

51 = {01[0,1]702[0,1]}. Right: expansion of2 = {C1;, 12,C2., 412},
3.2.5 DAG: 71 > 0,72 > 0, & pruning.

The CHS produces a DAG. There exist multiple paths from thet Ro
node to some other nodes. Note that the DAG structure alldsvs d
joint diagnosis regions to be aggregated in the same nodd-(gare =~ Computationally, one challenging aspect of the CHS is thrllirag
2). of continuous variables. As previously mentioned, iornd H (n)

3.3 Handling Continuous Variables



of cardinalityk,,, X, C %**. In algorithm 1, the expansion phase for m in conflicts do intersect with each others. Each interseted
replicates the continuous state-space of a father moidéo a child ~ gion thus explains a different subset of conflicts, and epoads
noden’, such thatX,, ¢ X,, C ®R*~*'. In practice it is possible to different nodes of the CHS-DAG. Consequently an uppentou
to maintain a single multidimensional spaceitf whereM isthe  to the worst case performances is given By, [2fm — 1] +
total number of components 8D. In this space, each conflictisahy- (%) I1,., m, [2fm; = 1[2fm; — 1]+ + I o[2fm —1].
percube of dimensior M. Step 2 of the CHS can be implemented ~ With it, bounds on cases i) and iii) can be easily expressed by
as an intersection of all conflict hypercubes. This results & par-  considering unbounded intervals, and a fixed number ofuateper
titioned hypercube of dimensial/. Remaining operations translate component, respectively.
into a labelling/unlabelling of the cube regions with thagtioses of
open nod_es. In implementation we use bsp-trees and theeécten 3.5 Generating Relevant Diagnoses
operator in [1].
In Artificial Intelligence it is important to study the geragion of ap-
. proximated results. Here the idea is developed that somesnofi
3.4 Properties the CHS DAG are more important than others. 4g® be theabnor-
mal predicate such thatt B(C) is true whenever fails. Suppose
Jhat each componertt has a probability distributiop(AB(C)|z)
of failing overx. The probability of a nodén, x) is:

Theorem 1(Soundness of CHS)Let S be a set of conflict sets, and
T a CHS-DAG obtained by using the CHS with node closing an
pruning. For any open node of T', (H (n), 2. ) is @ minimal hitting

set forS. pa(z)= [ p(AB(Ci)z) (3)

Proof. Steps 4 and 7 ensure that any ogenz) is a hitting set. CieH(n)

If (n,z) is not minimal, then it exists an open no@¢, z’) thatis  and the probability of: is:
such thatH (n') € H(n) andQ,,, C €, and that is not irf". The
CHS builds nodes from sets to supersets. Therefdrmust have I / pn(z)dz. 4)
been generated before Moreover if (n’, z') is closed, it is either: n
ifexpanded, and thus it exists’ such thath(n”) = h(n), withn’  The CHS algorithm can be easily adapted to the computatidheof
father ofn” so thatn”” = n andn is minimal, which contradicts the  most relevant minimal diagnoses. Given a numbbetween 0 and
hypothesis that is not minimal; ii/subsumed by some nodé, and 1, the nodegn, ,,) with p, < € are closed.
thusn is also subsumed hy’, and thus a node that subsumebas
been generated, which co/ntr:etdllcts .th.e hypothesis thahtitie had 4 Experimental Evaluation
not been generated. Thas', =) is minimal. |
The CHS was implemented and tested extensively throughl&imu
Theorem 2 (Completeness of CHS)Let S be a set of conflict sets, tion experiments. Overall, it yields fast results for sgaoader 10
andT a CHS-DAG obtained by using the CHS with node closing anddimensions, but doesn't scale favorably well beyond. Thénmex
pruning. For any minimal hitting seti ™, X ™), there exists an open sults are drawn from a set of 500 runs of the CHS¥6r= K = 6
noden of T" such that(H (n), Q,) = (H*, X™). components and conflicts. The simulation settings weregdesi to
validate the theoretical properties of the CHS with no sgeas-
Proof. Assume(H ™, X ™) minimal hitting set of sizé:. Then there  symption made on the domain (or SD). As such, they allow a fair
must bek components oveK conflicts such that foi = 1,--- ,k,  examination. The settings were as follows. Each conflictzhean-
CinH" # 0, and®;_, z; C X*. By construction of the DAG,  dom size. Each component in a conflict comes with a randomvite
for each conflicts CHS updates open nodes whose intersection withthat is generated by picking up two integers between 0 and 100
s is not empty, and expands all other open nodes:). So there ex- This section reports on the reactions of the CHS. The cootigu
ists a path from the Root node (&7, X ™). This path goes through  diagnoses are the open continuous leaves of the CHS-DAGhaird t
successively opened nodes. These nodes are closed ddfter:be-  number is the total number of minimal diagnoses. The disatistg-
ing expanded into other opened nodes; iifif subsumed by sth®  noses are the open nodes of the CHS-DAG. Both numbers theoret
nodes, which is impossible {f{*, X™) is minimal. In case&t = 0,  cally grow exponentially with the total number of conflicemients.
the Root node is the returned solution. O  Thisis visible on Figure 3 despite the fact that our experitaevere
limited to small numbers of components. In consequence thg C
Alike the HS, CHS is incremental and takes conflicts in anyeord has expanded many of the discrete diagnoses after just adiew c
Searching for all hitting sets of a given set is NP-complatel the  flicts (Figure 4). The DAG structure in the aggregate spacgiarj-
worst case performance of the standard HS is in the ordetofin noses allows the minimal continuous diagnoses to contioggdw
fact, the observed performances are usually well undethkisreti-  after all discrete diagnoses have been expanded (Figure 3).
cal bound but more realistic bounds of the HS performancesliér The complexity analysis has shown how the number of occerenc
ficult to obtain. For the CHS, three cases can be distingdishieere  of a component in conflicts plays a crucial role. This is dieaon-
in each conflict: i) each component has a single failure pd)rdach  firmed on Figure 5. The explosion of the number of minimal @ent
component has a single failure interval; i) each compotas dis-  uous diagnoses is a direct consequence of the NP-compleire od
joint failure intervals. The complexity of mixtures of treesituations  the problem. Figure 6 shows the minimal discrete diagnosedia-
lies within the theoretical bounds for i), i) and iii). tributed differently. This is due to the DAG structure: giva mean
Assumel components over a set & conflicts. The number of integer f of mean occurences ovél components, this number is
occurence of component over all conflicts is noted < f, < K.  always smaller thad/_, (). Thatis, the number of minimal dis-
In case ii), form, the maximum number of intervals over all con- crete diagnoses is at most all combinationsfaind fewer compo-
flicts is 2f,, — 1. This corresponds to the case where all intervalsnpents.
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Based on a second set of experiments we aimed to elucidate tha# continuous sets.

scaling properties of the approach wrt. the continuous dgioas.
These experiments are runs witlh ranging from 1 to 11K = 4,
and conflict random intervals if), 10]. The results are graphically

5

Conclusion

depicted on figures 7 and 8. The exponential response of theews  We have presented the CHS algorithm, a solution to findingrtine
mal hitting sets of a collection of sets with continuousibtties. The

algorithm uses an DAG representation in an aggregate sgatie o

of minimal continuous diagnoses appears clearly.
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Figure 9. Expansion vs. pruning.

In practice it was not possible to run the CHS in reasonafsie tin
problems with more than 10 or so continuous dimensions. iftfital
tion stems mainly from the pruning phase that dominatesahgpac-
tational effort (Figure 9). An addition to the pruning looloas the
inclusion checks of discrete diagnoses to be improved. Slraéta-
tion precludes its description here. In worst cases howéveprun-
ing loop continues to require up to several billions inamschecks

agnoses. CHS is based on the same dual mechanism as theatlassi

hitting set algorithms: it has an expansion phase and amgytiase.
To our knowledge CHS is the first computational method to pced
minimal diagnoses with continuous attributes. In practioavever,

CHS exhibits an unfair behavior: it expands high numbersooép-

tial diagnoses in little time and spends most of its time prgrout a

large fraction of them. It is an open problem how to bettekiathis

computational cost.
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