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Abstract. Many techniques in model-based diagnosis and other re-
search fields find the hitting sets of a group of sets. Existingtech-
niques apply to sets of finite elements only. This paper addresses the
computation of the hitting sets of a group of sets whose elements are
convex or non-convex, bounded or unbounded continuous regions.
We assume the conflict sets are known and we present a novel proce-
dure, the Continuous Hitting Set algorithm (CHS) for transforming
conflict sets of continuous elements into minimal hitting sets.

1 Introduction

Many theoretical and practical problems can partly reduce to an in-
stance of the minimal hitting set problem, or its close variant the min-
imum set covering problem. One widely recognized application is in
the field of model-based diagnosis [5]. In this approach, a system is
a tuple(COMPS, SD, OBS); COMPS is a finite set of system
components;SD is the system description;OBS is the observation.
A diagnosis is a minimal setD ⊆ COMPS such that under the
assumption that all other components are behaving correctly, D ex-
plains the observation givenSD. In the diagnosis community,D is
said to be consistent withSD andOBS. This approach to diagnosis
has two steps: (i) a collection of all minimal conflict sets iscom-
puted; (ii) the conflict sets are transformed into diagnoses. A conflict
sets ⊆ COMPS is such that the assumption that all components
in s are behaving correctly is not consistent withSD andOBS. A
minimal conflict set is such that it does not contain any otherconflict
set. Reiter showed that the minimal diagnoses are the minimal hitting
sets of the collection of minimal conflicts.

Since the beginning of model-based diagnosis, several algorithms
for computing the hitting sets have been introduced. Most rely on the
building of a so-called HS-DAG [2] or HS-tree [7] but other repre-
sentations exist [3, 4]. All these techniques transform conflict sets of
discrete elements into diagnoses. But in many applicationsof model-
based diagnosis, the conflicts contain more information. This infor-
mation includes but is not limited to intervals of possible failure time
in systems with functional delays, or continuous parameterranges
found in fault models. For example, in systems with delays, several
conflicts may involve the same components with different estimates
of the symptom occurence dates [6].

In this paper, we address step (ii) and assume all minimal conflicts
are given. Each conflict element is a component with bounded or un-
bounded intervals over a continuous line. We assume there isa single
continuous attribute per component, but this assumption has no inci-
dence on the generality of the presented method. The problemwith
conflict sets of continuous attributes is that minimal diagnoses are
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conditioned upon the component continuous values. This is because
a minimal diagnosis corresponds to a minimal continuous region. A
diagnosis in this context is a set ofk components along with a set
of bounded or unbounded regions ofℜk. Existing algorithms are not
designed to find and construct these regions. A naive strategy would
be to apply these algorithms to a collection of conflicts withselected
elements of the continuous lines. However, since the hitting set prob-
lem has a worst case performance that is exponential the sizeof the
collection of conflicts, this would hardly prove an efficientapproach.
Moreover, many points that belong to the same minimal diagnoses
would be computed independently.

This paper presents a general computational method for finding
the hitting sets of a collection of conflicts with continuousattributes.
The algorithm is named CHS for Continuous Hitting Sets. Starting
from the classical approach, the proposed solution searches the hit-
ting sets in an aggregate space of diagnoses. Similarly to the classi-
cal methods the CHS has both an expansion and a pruning phases. It
is shown how the pruning phase dominates the computational effort.
Simulation experiments on hundreds of randomly generated conflicts
assess the main properties and the scalability of the CHS.

2 Problem Definition and Solution Approach

2.1 Problem Formulation

We consider a tuple(COMPS, SD, OBS). A componentCi of
COMPS operates over a continuous linexi, wherei is the compo-
nent index, and that represents its failure time, or any other param-
eter or variable value (bounded or unbounded) domain. A conflict
set, or conflict for short, is a set of components which cannotbe-
have normally altogether according to the observations. Weassume
componentCi in a conflict s has a known unidimensional failure
interval Is

i . It is notedCiIs
i
. To simplify notationsCij where j

is an integer denotesCi[j,+∞]. A conflict of cardinalityk is noted
s = {C1Is

1
, · · · , CkIs

k
}. It defines a continuous region

Nk

i=1 Is
i

that is a hypercube ofℜk. A minimal conflict is a conflict that does
not strictly include any other conflict. Reiter proved that minimal di-
agnoses can be computed from minimal conflicts. Each component
in a potential diagnosis belongs to one or more conflicts. We say a
componentexplains, or equivalentlycoversthese conflicts. Given a
collectionS of conflicts a diagnosis of cardinalityk is a tuple(D, X)
whereD andX are the discrete and continuous diagnosis respec-
tively. They are such thatD ∈ COMPS with D = {C1, · · · , Ck}
andX ⊆

Nk

i=1[
T

s∈S∗
i

Is
i ], whereS∗

i ⊆ S is the subset of conflicts
that areexplainedby Ci. The inclusion is a consequence of having
conflicts with overlapping continuous regions. This conditions diag-
noses upon regions that are smaller than the failure interval in each
conflict.



Example 1. Consider two conflictss1 = {C11, C2τ2+1, C31},
s2 = {C1τ1+1, C21, C41}, τ1 ≥ 0, τ2 ≥ 0. The six diagnoses
are

(D1, X1) = (C1, x1 ∈ [τ1 + 1, +∞[)

(D2, X2) = (C2, x2 ∈ [τ2 + 1, +∞[)

(D3, X3) = ({C1, C2}, x1 ∈ [1, τ1 + 1[∪x2 ∈ [1, τ2 + 1[)

(D4, X4) = ({C1, C4}, x1 ∈ [1, τ1 + 1[∪x4 ∈ [1, +∞[)

(D5, X5) = ({C3, C2}, x2 ∈ [1, τ2 + 1[∪x3 ∈ [1, +∞[)

(D6, X6) = ({C3, C4}, x3 ∈ [1, +∞[∪x4 ∈ [1, +∞[).

with x1 ∈ [1, τ1 + 1[⊂ [1, +∞[, x2 ∈ [1, τ2 + 1[⊂ [1, +∞[.

2.2 Solution Approach

2.2.1 Hitting set algorithm

A hitting set of a collection of sets is a set intersecting every set of this
collection. Minimal hitting sets of a collection of minimalconflicts
yield the minimal diagnoses. An incremental algorithm to generate
all the minimal hitting sets based on a set of conflicts was originally
proposed by [5], then corrected by [2]. This algorithm givesa means
to compute diagnoses incrementally, under the permanent fault as-
sumption.

The diagnosis algorithm builds a Hitting-Set tree (HS-tree) in
which all the nodes but leaves are labelled by a conflict set. For each
elementC in the conflict label of noden, an edge labelledC joins
n to a successor node.H(n) is defined as the set of edge labels on
the path fromn to the root node. The HS-tree is built by considering
every conflict in arbitrary order. Every new conflict is compared to
every leaf of the HS-tree, and some new leaves are built if necessary.
The resulting HS-tree is pruned for redundant or subsumed leaves
before the next conflict is considered. Pruned leaves are said to be
closed. At the end of the diagnosis procedure, the minimal hitting
sets, and hence the minimal diagnoses that explain the system’s mis-
behaviors, are given by the set of edge labelsH(l) associated to the
open leavesl of the HS-tree.

2.2.2 Continuous hitting sets

The original hitting set algorithm considers conflict sets with dis-
crete elements only. It looks for singletons in each conflictset. The
algorithm cannot condition the diagnoses upon the different contin-
uous failure points of a component. Doing this significantlyenlarges
the number of diagnoses. It follows that the difficulty we address
in this paper is the potentially huge size of the space of diagnoses
over continuous regions. The reason for this size is the existence of
continuous variables. The hitting set algorithm is exponential in the
number of conflict elements so the number of potential diagnoses is
staggering.

Underlying the diagnoses are the conflicts, each being explained
by the failure of a component in certain regions of its continuous
line. It follows that the dimension of the continuous space is the total
number of different components in the set of conflicts. In general we
assume the continuous space dimension to be equal to the number of
components in the system. The challenge is thus to apply the hitting
set algorithm to this continuous state-space. Our solutionto address
this issue is to search for minimal diagnoses in anaggregate space
of diagnosesthat is represented by a directed acyclic graph (DAG)
in which there is a node for each potential diagnosis. In other words,
each node of our DAG represents a continuous region in which the
discrete diagnosis element is the same.

3 Generating Diagnoses from Conflicts with
Continuous Elements

A simple way of understanding the Continuous Hitting Set (CHS)
algorithm is as a variant of the HS algorithm where candidatediag-
noses with identical discrete elements are expanded in unison. The
main difference with the HS is twofold:

• The CHS produces a DAG instead of a tree.
• Nodes are often simultaneously a leaf and a node in the interior of

the DAG. This happens when a part of the aggregated diagnoses
do explain all conflicts, while another part does not.

In the standard HS-tree, a single diagnosis is associated with each
node. In the CHS, multiple diagnoses are associated with a single
node.

3.1 Data Structures

The main data structure represents a noden. Given a set of conflicts
S, it contains:

• A diagnosisH(n) that is a set ofkn edge labels, i.e. components.
• A region Xn of continuous diagnosis elements. It represents the

continuous lines of the components inH(n), Xn ⊆ ℜkn .
• Openn(.) → {0, 1}: the Open function. For eachx ∈ Xn,

Openn(x) indicates whether(n, x) explains all conflicts inS.
The open region ofn is notedΩn = {x ∈ Xn|Openn(x) = 1}.
A diagnosis is either opened or closed. Note that we don’t refer
to open or closed nodes; instead we refer to diagnoses associated
with nodes as being open or closed.

• δn(., .) theexplanation function. Forx ∈ Xn ands ∈ S, δn(s, x)
indicates whethers is explained by(n, x). Formally,

δn(s, x) =

(

1 if ∃CiIs
i

st.Ci ∈ s ∩ H(n) with x ∈ Is
i ,

−1 otherwise.
(1)

3.2 The CHS algorithm

Algorithm 1 presents the main procedure.

3.2.1 Expansion (lines 9 to 12):

For a noden and a conflicts:

An(s, x) =

(

{C ∈ s|C 6∈ H(n)} if δn(s, x) = −1

∅ otherwise
(2)

is the set of discrete conflict elements that canexpand(n, x). At each
iteration, CHS expands a diagnosis(n, x) if it doesn’t explain the
conflict s. An important distinction between HS and CHS is that in
the latter, nodes are often partially expanded. This means not all con-
flicts are explained by some diagnoses(n, x) of noden. The catch is
that only those(n, x) that do not explain all conflicts are expanded,
and closed after expansion.

3.2.2 Computing the explanation functions (lines 10 & 4):

Each newly expanded(n, x) must be updated. This consists in re-
computing its explanation function (Eqn (1)).



1: Root node such thatH(Root) = {} andΩRoot = ℜM , for M

components inSD.
2: for all conflict setss ∈ S do
3: for all (n, x) such thatOpenn(x) = 1 do
4: if δn(s, x) = 1 then
5: For all C ∈ H(n) ∩ s, add the pair(n, x) to

oldleaves[C].
6: else
7: for all CIs ∈ s do
8: if An(s, x) containsC then
9: Expand(n, x) by adding an edge labelled withC

and successor aggregated nodes
`

n′, x′ = (x, y)
´

with y ∈ Is.
10: Computeδn′(s, x′), open / close(n′, x′) accord-

ingly.
11: Add the pair(n′, x′) to newleaves[C].
12: Close the expanded(n, x).
13: for all C in s do
14: for all leaf (n, x) of newleaves[C] do
15: if H(n) containsH(n′) andΩn containsΩn′ for some

(n′, x′) in oldleaves[C] then
16: Close(n, x).

Algorithm 1: CHS algorithm.

3.2.3 Opening & closing of continuous regions (line 10):

The algorithm proceeds by leaving open the regions of the continu-
ous space that explain all conflicts, and by closing the others. Simi-
larly to the original HS, the CHS has an expansion phase and a prun-
ing phase. In the expansion phase,(n, x) is closed if it has been
expanded, or if∃s st. δn(s, x) = −1 andAn(s, x) = {}. In the
pruning phase,(n, x) is closed if it is subsumed by some other node
(n′, x′) such thatH(n′) ⊆ H(n) andΩn′ ⊆ Ωn. For every new
conflict s and every elementC of the conflict, the algorithm builds
two lists,newleaves[C] andoldleaves[C] , which are then compared.
Closed regions of a given node cannot be reopened. This is eas-
ily seen since closed regions contain points that do not explain all
conflicts. Therefore these regions are expanded into new nodes. The
(n, x) that remain opened after all conflicts inS have been processed
are the minimal diagnoses.

3.2.4 Example:

Consider the two conflicts of example 1. Figure 1(a) picturesthe
CHS structure after the expansion ofs1. Expansion ofs2 leads to
the closing of the subregion1 ≤ x1 < τ1 + 1 of node 1, and
closes node 3, see Figure 1(b). Node 2 is unchanged since after step
4, δ2(s, x2) = 1 for all openx2 ≥ τ2 + 1, leavingA2(.) empty. The
pruning phase closes nodes and regions. A noden is closed when-
ever for allx, Ωn(x) = ∅ for all x ∈ Xn. Node 6 is closed as it is
subsumed by node 1. Similarly, node 2 subsumes some continuous
regions of nodes 4 and 7, that are thus closed. Node inclusions are
represented with dashed edges on Figure 1(c).

3.2.5 DAG:

The CHS produces a DAG. There exist multiple paths from the Root
node to some other nodes. Note that the DAG structure allows dis-
joint diagnosis regions to be aggregated in the same node (see Figure
2).

Root

1 2 3

C1 C2 C3

Ω1 = {x1 ≥ 1} Ω2 = {x2 ≥ τ2 + 1} Ω3 = {x3 ≥ 1}

(a) Expansion ofs1.

Root

1 2 3

C1 C2 C3

4 5 6 7 8

C2 C4 C1 C2 C4

Ω1 = {x1 ≥ τ1 + 1}
Ω2 = {x2 ≥ τ2 + 1}

Ω4 =
{1 ≤ x1 < τ1 + 1}

∪{x2 ≥ 1}

Ω5 =
{1 ≤ x1 < τ1 + 1}

∪{x4 ≥ 1}

Ω6 =
{x1 ≥ τ1 + 1}

∪{x3 ≥ 1}

Ω7 =
{x2 ≥ 1}
∪{x3 ≥ 1}

Ω8 =
{x4 ≥ 1}
∪{x3 ≥ 1}

(b) Expansion ofs2.

Root

1 2 3

C1 C2 C3

4 5 6 7 8

C2 C4 C1 C2 C4

Ω1 = {x1 ≥ τ1 + 1}
Ω2 = {x2 ≥ τ2 + 1}

Ω4 =
{1 ≤ x1 < τ1 + 1}
∪{1 ≤ x2 < τ2 + 1}

Ω5 =
{1 ≤ x1 < τ1 + 1}

∪{x4 ≥ 1}
×

Ω7 =
{1 ≤ x2 < τ2 + 1}

∪{x3 ≥ 1}

Ω8 =
{x4 ≥ 1}
∪{x3 ≥ 1}

(c) Pruning after expansion ofs2.

Figure 1. Expansion and pruning.

Root

1 2

C1 C2

Ω1 = [0, 1] Ω2 = [0, 1]

Root

1 2

3

C1 C2

C2 C1

Ω3 =
{{x1 ∈ [0, 1]} ∪ {x2 ∈ [τ2 + 2, +∞[}}

∪{x1 ∈ [τ1 + 2, +∞[} ∪ {x2 ∈ [0, 1]∪}}

Figure 2. CHS produces a DAG. Left: expansion of
s1 = {C1[0,1], C2[0,1]}. Right: expansion ofs2 = {C1τ1+2, C2τ2+2},

τ1 ≥ 0, τ2 ≥ 0, & pruning.

3.3 Handling Continuous Variables

Computationally, one challenging aspect of the CHS is the handling
of continuous variables. As previously mentioned, forn, andH(n)



of cardinalitykn, Xn ⊆ ℜkn . In algorithm 1, the expansion phase
replicates the continuous state-space of a father noden into a child
noden′, such thatXn ⊂ Xn′ ⊆ ℜkn+1. In practice it is possible
to maintain a single multidimensional space inℜM whereM is the
total number of components inSD. In this space, each conflict is a hy-
percube of dimension≤ M . Step 2 of the CHS can be implemented
as an intersection of all conflict hypercubes. This results into a par-
titioned hypercube of dimensionM . Remaining operations translate
into a labelling/unlabelling of the cube regions with the diagnoses of
open nodes. In implementation we use bsp-trees and the intersection
operator in [1].

3.4 Properties

Theorem 1(Soundness of CHS). LetS be a set of conflict sets, and
T a CHS-DAG obtained by using the CHS with node closing and
pruning. For any open noden of T , (H(n),Ωn) is a minimal hitting
set forS.

Proof. Steps 4 and 7 ensure that any open(n, x) is a hitting set.
If (n, x) is not minimal, then it exists an open node(n′, x′) that is
such thatH(n′) ⊆ H(n) andΩn′ ⊆ Ωn and that is not inT . The
CHS builds nodes from sets to supersets. Thereforen′ must have
been generated beforen. Moreover if(n′, x′) is closed, it is either:
i/expanded, and thus it existsn′′ such thath(n′′) = h(n), with n′

father ofn′′ so thatn′′ = n andn is minimal, which contradicts the
hypothesis thatn is not minimal; ii/subsumed by some noden′′, and
thusn is also subsumed byn′′, and thus a node that subsumesn has
been generated, which contradicts the hypothesis that thisnode had
not been generated. Thus(n′, x′) is minimal.

Theorem 2 (Completeness of CHS). Let S be a set of conflict sets,
andT a CHS-DAG obtained by using the CHS with node closing and
pruning. For any minimal hitting set(H∗, X∗), there exists an open
noden of T such that(H(n), Ωn) = (H∗, X∗).

Proof. Assume(H∗, X∗) minimal hitting set of sizek. Then there
must bek components overK conflicts such that fori = 1, · · · , k,
Ci ∩ H∗ 6= ∅, and

Nk

i=1 x∗

i ⊆ X∗. By construction of the DAG,
for each conflicts CHS updates open nodes whose intersection with
s is not empty, and expands all other open nodes(n, x). So there ex-
ists a path from the Root node to(H∗, X∗). This path goes through
successively opened nodes. These nodes are closed either: i/after be-
ing expanded into other opened nodes; ii/if subsumed by someother
nodes, which is impossible if(H∗, X∗) is minimal. In casek = 0,
the Root node is the returned solution.

Alike the HS, CHS is incremental and takes conflicts in any order.
Searching for all hitting sets of a given set is NP-complete,and the
worst case performance of the standard HS is in the order of2M . In
fact, the observed performances are usually well under thistheoreti-
cal bound but more realistic bounds of the HS performances are dif-
ficult to obtain. For the CHS, three cases can be distinguished, where
in each conflict: i) each component has a single failure point; ii) each
component has a single failure interval; iii) each component has dis-
joint failure intervals. The complexity of mixtures of these situations
lies within the theoretical bounds for i), ii) and iii).

AssumeM components over a set ofK conflicts. The number of
occurence of componentm over all conflicts is noted0 ≤ fm ≤ K.
In case ii), form, the maximum number of intervals over all con-
flicts is 2fm − 1. This corresponds to the case where all intervals

for m in conflicts do intersect with each others. Each intersectedre-
gion thus explains a different subset of conflicts, and corresponds
to different nodes of the CHS-DAG. Consequently an upper bound
to the worst case performances is given by

PM

m=1[2fm − 1] +
`

M
2

´
Q

mi,mj
[2fmi

− 1][2fmj
− 1] + · · · +

QM

m=0[2fm − 1].
With it, bounds on cases i) and iii) can be easily expressed by

considering unbounded intervals, and a fixed number of intervals per
component, respectively.

3.5 Generating Relevant Diagnoses

In Artificial Intelligence it is important to study the generation of ap-
proximated results. Here the idea is developed that some nodes of
the CHS DAG are more important than others. LetAB be theabnor-
mal predicate such thatAB(C) is true wheneverC fails. Suppose
that each componentC has a probability distributionp

`

AB(C)|x
´

of failing overx. The probability of a node(n, x) is:

pn(x) =
Y

Ci∈H(n)

p
`

AB(Ci)|x
´

(3)

and the probability ofn is:

pn =

Z

Ωn

pn(x)dx. (4)

The CHS algorithm can be easily adapted to the computation ofthe
most relevant minimal diagnoses. Given a numberǫ between 0 and
1, the nodes(n, Ωn) with pn < ǫ are closed.

4 Experimental Evaluation

The CHS was implemented and tested extensively through simula-
tion experiments. Overall, it yields fast results for spaces under 10
dimensions, but doesn’t scale favorably well beyond. The main re-
sults are drawn from a set of 500 runs of the CHS forM = K = 6
components and conflicts. The simulation settings were designed to
validate the theoretical properties of the CHS with no special as-
sumption made on the domain (or SD). As such, they allow a fair
examination. The settings were as follows. Each conflict hasa ran-
dom size. Each component in a conflict comes with a random interval
that is generated by picking up two integers between 0 and 100.

This section reports on the reactions of the CHS. The continuous
diagnoses are the open continuous leaves of the CHS-DAG and their
number is the total number of minimal diagnoses. The discrete diag-
noses are the open nodes of the CHS-DAG. Both numbers theoreti-
cally grow exponentially with the total number of conflict elements.
This is visible on Figure 3 despite the fact that our experiments were
limited to small numbers of components. In consequence the CHS
has expanded many of the discrete diagnoses after just a few con-
flicts (Figure 4). The DAG structure in the aggregate space ofdiag-
noses allows the minimal continuous diagnoses to continue to grow
after all discrete diagnoses have been expanded (Figure 3).

The complexity analysis has shown how the number of occurence
of a component in conflicts plays a crucial role. This is clearly con-
firmed on Figure 5. The explosion of the number of minimal contin-
uous diagnoses is a direct consequence of the NP-complete nature of
the problem. Figure 6 shows the minimal discrete diagnoses are dis-
tributed differently. This is due to the DAG structure: given a mean
integerf of mean occurences overM components, this number is
always smaller than

Pf

i=1

`

M
i

´

. That is, the number of minimal dis-
crete diagnoses is at most all combinations off and fewer compo-
nents.
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Figure 3. Mean minimal continuous diagnoses
wrt. the number of conflicts.
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Figure 4. Mean minimal discrete diagnoses wrt.
the number of conflicts.
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Figure 5. Minimal continuous diagnoses (500
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Figure 6. Minimal discrete diagnoses (500 runs).
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Figure 7. Minimal continuous diagnoses.
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Figure 8. Minimal discrete diagnoses.

Based on a second set of experiments we aimed to elucidate the
scaling properties of the approach wrt. the continuous dimensions.
These experiments are runs withM ranging from 1 to 11,K = 4,
and conflict random intervals in[0, 10]. The results are graphically
depicted on figures 7 and 8. The exponential response of the number
of minimal continuous diagnoses appears clearly.
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Figure 9. Expansion vs. pruning.

In practice it was not possible to run the CHS in reasonable time on
problems with more than 10 or so continuous dimensions. The limita-
tion stems mainly from the pruning phase that dominates the compu-
tational effort (Figure 9). An addition to the pruning loop allows the
inclusion checks of discrete diagnoses to be improved. Space limita-
tion precludes its description here. In worst cases however, the prun-
ing loop continues to require up to several billions inclusion checks

of continuous sets.

5 Conclusion

We have presented the CHS algorithm, a solution to finding themini-
mal hitting sets of a collection of sets with continuous attributes. The
algorithm uses an DAG representation in an aggregate space of di-
agnoses. CHS is based on the same dual mechanism as the classical
hitting set algorithms: it has an expansion phase and a pruning phase.
To our knowledge CHS is the first computational method to produce
minimal diagnoses with continuous attributes. In practicehowever,
CHS exhibits an unfair behavior: it expands high numbers of poten-
tial diagnoses in little time and spends most of its time pruning out a
large fraction of them. It is an open problem how to better tackle this
computational cost.
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