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Abstract

Filtering consists in estimating the value of system statée v
ables based on available noisy measurements. In Artificial
Intelligence (Al), reasoning from first principles usesitog

to trace back influences among variables and finds minimal
sets that can be held responsible for a given measurement.
Both theories rely on a model of the system, but while filter-
ing implements an error feedback mechanism that closes on
the measurements, reasoning from first principles provides
the ability to localise the causes from the effects. In derta
cases, when a system mishehaves, e.g. the motor in a robotic
arm joint starts failing, the filter is able to detect the gitiiut
unable to locate the problem with precision in the statespa
The ability to break up the filter's feedback loop in such sase

is exactly the purpose of our approach. We aim at coupling
the localization ability of the theory of diagnosis from firs
principles with the state estimation achievement of Kalman
filtering. The targeted result is a novel filter which locakz

the subpart of the system that is misbehaving, isolated-its e
fects, and keeps tracking a partial state.
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1992). The problem is then to anticipate appropriate skele-
ton models.

In this paper, we adopt a different point of view on the
problem of tracking the state of a system. Our approach is
based on a reference behavior model (e.g. that of nominal
behavior) but instead of closing on all the measurements, we
propose to scale the filter so that it only closes on the part of
the system that can be trusted to correspond to the reference
model. It is necessary that such a filter correctly identifies
the variables that fit the model, leaving the others in open
loop. The filter naturally leaves the uncertainty to grow on
these latter variables. The rational behind it is that the sy
tem upper controlling layers act locally on the estimated un
certainty, orlevel of unknowingnessnstead of aiming at
identifying a fully fitted model. Building the filtering loop
to this end is challenging.

First, the subpart of the system and corresponding sub-
set of variables whose behavior does not fit the reference
model have to be identified. Although the numerical feed-
back loop that is natural to most filters makes it difficult to
isolate these variables, we argue that they can actuallgbe d
termined through causal analysis by logically tracing eaus

There exist numerous strategies for tracking the state of a from their effects in the causal structure of the model. In

possibly faulty system, using noisy measurements. The im-
plied stochasticity of the system dynamics together wiéh th
number of faulty situations to account for makes it neces-
sary to track a high number of behavioral hypotheses si-
multaneously. This is typically done by running either a
bank of filters or a cloud of particles (Doucetal. 2000).

Al, a logical theory of diagnosis does exist that can just do
that. Diagnosis from first principles (DX) logically infers
the minimal sets of elementary components that can be held
responsible for a discrepancy in the system (Hamscher, Con-
sole, & J. de Kleer 1992). We use the power of this infer-
ence to break up the filter feedback loop after projecting the

In most cases, the number of trajectories is untractable, or component sets on the corresponding setsfustedvari-

it is simply counter-productive to track them since many

ables. Untrusted variables are hence decoupled from the fil-

states are in fact never reached. For this reason, researcher loop. Second, the estimation step needs to be revised so

has concentrated on ways to drive the filter's focus on the
subset of relevant hypotheses (Hofbaur & Williams 20023;
Narasimhan, Dearden, & Bénazéra 2004) and to mitigate
the blowup in tracked states (Hutter & Dearden 2003;
Bénazéra & Travé-Massuyes 2003).

While these strategies are effective in practice, not all hy

that effects of untrusted variables are prevented frontaffe
ing themselves andanevariables, while discrepant mea-
surements must not be used for updating the filter's innova-
tion.

The aim of this paper is to bring a reasoning layer as well
as a partial covariance minimization scheme into existing

potheses can be modeled, of course, and more so in the casdilters, starting with the Unscented Kalman filter that apgli

of fault hypotheses, whose number is potentially infinite.
An alternative is to design a filter that tracks the poteltial

unmodeled behaviors. This can be done by fitting parame-

ters to a skeleton model, e.g. using Generalized Likelihood
Ratio or Expectation Maximization (Basseville & Nikiforov

to nonlinear systems. The contribution stands on the idea
of coupling a filtering technique well-known in the Control
diagnosis community (FDI) with logical diagnosis inferenc
from the Al diagnosis community (DX). It hence fits into the
BRIDGE framework aiming at creating synergies between



/ - hypotheses to be modelled.
(@ @, Diagnosis from First Principles
N Diagnosis oriented causal modelling

Reasoning about non-linear systems can be supported by a
causal representation of influences among variables. Influ-
ences are a conceptualisation of the links establishedeby th
components between variables in a system. In fact, causal

models have been proposed and shown to be suitable for di-
Y1 <? agnosis in several pieces of work (Biswas & Manders 2006;
AN
z2

Travé-Massuyest al. 2001; Travé-Massuyes & Calderon-
72 Espino;a 2007). The model caus_al structure_then acts as
(a) Support to the dynamic(b) Causal System Descrip- a substitute of dependency recording me_chanlsms. Causal
model. tion (CSD) for the robotic models are generally supported by an oriented graph, also
arm. calledCausal Graphin which nodes represent variables and
edges represent influences from variable to variable. An ori
. . . ented edge from variablg to variablev; exists ifv; has an
Figure 1: Two-link planar arm representation. influence onv;, i.e. if a perturbation on variable, affects
the value of variable;. v; andv; are called theauseand

. theeffectvariable of the influence, respectively. Three types
the FDI and DX communities (Gautaet al. 2004). of variables exist to model a system:

The paper is organised as follows. The next section
presents our case study, which is a planar arm with two X X
joints. The succeeding section overviews the principles of ~ &€ controlled by the system’s environment and assumed
model based diagnosis and presents how causal models can 0 P& knownz, is the number of input variables.
be used. This is then interpreted in matricial form, brimgin e Measured or output variablese known, as provided by a
it back to the same framework as filtering methods, and the  sensoring devicen, is the number of measured variables.

computation methods for deriving conflicts and diagnosesin o state variablesire internal to the model and their values
this framework are presented. Following is the presematio are not knownr,, is the number of internal variables.

of the Unscented Kalman Filter and how it can be modifed . L

for partial state hypothesis filtering. Finally our senpsed Definition 1 (Causal System Description (CSD))et
loop filter SCL-UKF that accounts for logical diagnosis in- ¢S50 = {V,Z} be the causal system description whéfe
ference is provided. Early results of the application of SCL IS the set of variables that define the system, Attiue set of
UKF to the planar arm are given and discussed. The paper °riented influences that model dependencies.

ends with a section discussing related and future works.

e Input variablesare exogenous to the system. Their values

Conflicts and Diagnoses

Case study Let's assume that a fault detection mechanism is available
i and that it activates an alarm when the measured value (also
A two-link arm example called observatiof of an output variable is not consistent

Our case study is a two-link planar arm with two joints, at with the expected value. Such a discrepancy for a measured
the shoulder and at the elbow. The state of the system is variablez eventually indicates a misbehavior.

represented by a vectar = (o, 6. 6, 6, ) wheref;,0 are Definition 2 (Discrepant output vectar)_et Z be the vector

the angular positions of the shoulder and elbow joints, re- f output variables. The discrepant observation ve&biis
spectively. The angular positiofs andf, are measured. {1 if -, is discrepant

my1, mo are the respective masses of each link. Figure 1(a) a vector of sizex, such thatzif = !
pictures a schematic support to the arm dynamic model of 0 otherwise.
figure 2.  Our model of the arm includes a PD controller, When one or several output variables misbehave, we can
which allows for the two angular position inputs to be trans- derive all sets of faulty influences that may explain the ob-
lated into the input torques, andr,. While the model is servations. The influences that may be at the origin of the
simple enough, the number of possible faults is staggering. misbehavior of a variable; are those related to the edges
Component-wise, both joints can fail, the mass of the second belonging to the paths going from the measured nodes to the
limb can vary when used to pick up objects. Sensors and the node representing;, also calledascending influenceShe
controller may also fail. State-wise, this correspondd to  set of such influences is@nflictset in the sense of (Reiter
single discrepancies of angular positions and speedshwhic 1987). Conflict sets are sets of influences that cannot behave
yield 2* multiple faults,2° with sensor faults, an?'® with normally altogether according to the observations. A min-
controller faults. Thus for such a small system, an exhaus- imal conflict is a conflict that does not strictly include (in
tive multi-hypothesis filter would requir2'® hypotheses to the sense of set inclusion) any conflict. (Reiter 1987) pidove
be modelled. In the following, we show how to build a sin- that minimal diagnoses can be computed from minimal con-
gle filter that does reconfigure itself instead of relying on flicts.



M(ZC) |:91:| + {—m2a1a2(29‘192. + 9%) + sin 92:| + |:(m1 —+ m2)ga1 COS 91 —+ magas COS 91 + 92:| _ |:T1:|

ég m2a1a29% sin 92 magaz COs 91 + 92 T2
where
M(z) = (m1 + ma)a? + maa + 2maajaz cosfy  moa3 + moajas cos Oy
maa3 + maayaz cos b moa3
Figure 2: Two-link planar arm dynamic model.
Proposition 1 (Minimal Diagnosis (Reiter 1987))Given a ascending influences of the discrepant output variables of
discrepant observation vectdf/, A C 7 is a (minimal) z/r.
diagnosis for(CSD, Z7) iff A is a (minimal) hitting set for In the above matrix, all conflicts are represented but it is
the collection of (minimal) influence conflict sets. difficult to identify each of them and relate them to their
A hitting set of a collection of sets is a set intersecting corresponding discrepant output variable. Now, configtin
every set of this collection. influences naturally map onto variables and conversely. In-
deed, influence conflict sets correspond to paths in the causa
Determining Candidate Diagnoses graph and a path may as well be represented by the edges

In this section, we first interpret influence conflicts and di- (influences) or by the nodes (variables). This leads to the

agnoses in a matricial form, suitable for coupling with the fo"?"‘{'hg def'n't',()n' ) , ) )
filtering framework. The computational methods for build- Definition 4 (Variable Conflict Matrix) Given a discrepant

ing conflictanddiagnosis matriceare then presented. output vectorZ7, a variable conflict matrix\ is a boolean
- i [ i matrix of sizen, x n. such that 225 iy > 0 A =
Conflicts and diagnoses in a matrix framework L X e 0 othemise.

The causal graph associated to CSD can be equivalently rep-
resented by an incidence matrix of size (n.,n.) with
Ne = Ny + Ny + Nt

Considering a single rovy; of A we know that all state,
input and output variables indicated by a non zero entry in

A; influence the discrepant outpulf. This implies that at

A B 0 . 1if 2; influences ; least one of these variables has to suffer a faulty influence
I=|0 L 0),withZ;;= {0 otherwise ! to cause the discrepancy afl. Hence this set of variables

H 0 L can equivalently represent the influence conflyt.suffer a
where A is of size(ny, ny), B of size (ng, n,), andH of faulty influenceve mean that in the physical system, there

size (n.,n,). These are incidence matrices that represent MUSt exist at least one influence on this variable whose ef-
influences among state, input, and output variables, respec fect on the discrepant output is incorrectly captured by the
tively. 7 reflects the natural hierarchy of influences: inputs référence model. This set of variables is calledagiable

on state, state on measurds.andl, are identity matrices conflict set.A minimal variable conflict matrix is a matrix

and account for effects due to external causes onto inputs Whose variable sets indicated by 1-valued entries on each
(e.g. controller) and outputs (e.g. sensors). row do not strictly include (in the sense of set inclusiony an

variable conflict. Therefore a minimal conflict matrix indi-

, t inimal variabl flicts only. Finally, we define th
Example. Figure 1(b) shows the CSD#/,Z} for our case caies minima vanas e Conticts only. Finaly, we define the

ud th T We have: A diagnosis matrix as follows.
study, wi - O(gl 0201071 72 21 22 ). We have:d = Definition 5 (Diagnosis matrix) Given a discrepant mea-

1111 . . ! . . .
(} i }),B = (? 8), surement vectoZ/, a diagnosis matrixA is an influence
1111 01 incidence matrix of size. x n. in which at least one faulty

11 1 10 00 O influence represented by a 1-value entry accounts for each
1 1.1 10 00 0 discrepant measure ¢t/ .
} } % %(1) (1)8 8 Example. _Consider the arm’'s shoulder joint mea-
H= ((1)(1)88) andZ = 5010100 sure is discrepant, soZ; = (1 0). A =
00 0 oo 10 o <11111110)
0 000 00 0 0)
1 0 0 00 01 O
0 1 0 0o oo 1 11 1 10 ofo 0
For a given discrepant output vectsf, influence conflict % % } 1? 88 8
sets may as well be represented in matrix form, as indicated 11 1 10 10 o
by the following definition. L= 100 om 00 0
Definition 3 (Influence Conflict Matrix) Given a discrepant 0 0 0 00 1/0 0
output vectorZ/, an influence conflict matrik is an inci- T 0 0 00 O[T O
dence matrix of size. x n. whose entries correspond to 0 1 0 00 o0 0




are the conflict matrices of variables and influences, respec
tively. A with all entries equal to 0 buf\; ; = 1 is a possi-
ble diagnosis matrix.

Computing Conflict Matrices

The discrepant output vector leads to the identificatiohef t
matrix of conflicting influences. This section is concerned
with the computational methods for building the conflict and
diagnosis matrices defined above.

We suppose a discrepant output vectdr. H7 (of size
n, X n;) is obtained by selecting the rows &f that corre-
spond to positive values df/ and zeroing the others/
tells which state variables directly affect the discreparit
puts. Effects of state variables on other state variables ar
taken into account by the matrit. Thus we dubX /! =
HY A thediscrepant state influence matriin other words,
variablez; influences output; iff Xj.:;.l # 0. However,

X1 expresses direct influences of the state on the outputs.
Upstream influences can be captured iteratinglone. by
X2 = X7 A, And so on fork steps, X ¥ = Hf A*, un-

til (A)*+1 = (A)*. State variable conflicts are made of all
influences from state variables onto outputs, thus

k
X' =HI+Y HI(A)
=1
Herek is such that A)**! = (A)*. We define the input in-
fluence matrixBf = X/B wherij’fi #£ 0 implies that in-
putu; influences output;. Finally the matrix// (obtained
from the identity matrix of sizex, by keeping the ones cor-
responding taZ7) is used to account for sensor failures.
Example. As before, considef’ (1 0). Therefore
HI = (3888). A% = L, and X/ = (§h44), BY =
11 10

( 00 ) ’ 00 ) )

Now, we can build the variable conflict matrix as
the concatenation of matricX ¢, B¢, I;). Following the
consistency-based theory presented abavis, the conflict
matrix because each of its rows indicates an influermee
flict.

Example. Following up on our example:
A~ 11111110
~\0 0 00O O0O0O°UO

Algorithm 1 sums up the steps of the automated genera-
tion of A.

1)

Build H from the discrepant lines df.
Compute powers ofl.

ComputeX /.

ComputeB/.

Build A «— (Xf, Bf, I/).

Algorithm 1: Conflict generation.

Proposition 2 (Minimal Conflict matrix) Given a dis-
crepant output vectoZf, A is the minimal conflict matrix
w.rt. Z7.

Proof. The conflict matrix of variabled. contains all vari-
ables that can held responsible for a discrepant variable. |
a graph theoretic framework, the matrix of conflicting influ-
encesl’ contains all edges that belong to paths from input,
state and output vertices to the discrepant vertices. Réths
increasing lengths correspond to the powets & of the in-
cidence matrixA. Considering a patp; in this graph, and
assuming that one influende is removed, leads to a sub-
pathsp;. Thensp; is no conflict since iff,. is faulty, all the
influences irsp; can be normal, the discrepancy being hence
explained byZ,. only. The same applies to any subpathof
meaning thap; corresponds to a minimal conflict. O

Computing diagnosis matrices

Hitting sets based computation From the previous sec-
tion it comes that the logical theory of diagnosis allows for
the generation of the diagnosis candidates through the com-
putation of the hitting sets.

Computing the diagnoses comes back to computing the
hitting sets of the subset of variables indicated by each row
of A. This computation returns the set of diagnosis matri-
ces. An incremental algorithm to generate all the minimal
hitting sets based on a set of conflicts was originally pro-
posed by (Reiter 1987), then corrected by (Greiner, Smith, &
Wilkerson 1989). This algorithm gives a means to compute
diagnoses incrementally, under the permanent fault assump
tion. It builds a Hitting-Set tree (HS-tree) in which leaves
contain the minimal diagnose. Like in (Travé-Massuyes &
Calderon-Espinoza 2007), we refer to the algorithm versio
by (Levy 1991) which is more efficient than the original one
because it uses less comparisons at each step. We imple-
ment a version of the algorithm where diagnoses are given
by matrices, and where edges need not to be labelled.

Algorithm 2 begins with a treé{ S consisting of a sim-
ple root, with an attached empty diagnosis matrix. Each tree
noden supports a diagnosis matrix that records entries that
solve the conflicts from the root node to The algorithm
takes conflicts (vector rows df) in an arbitrary order. For
every conflictA; and every elemem; . of the conflict, the
algorithm builds two listsnewleavesf] and oldleavesg]

(step 3). New leaves to a leladire created whenevarg is not
already intoA;. Intersection test is a matrix operation that
maps influences diagnose onto conflicting variables (step 7)
The conversion from state conflicts to influence conflicts is
done at step 8. Step 10 creates the local diagnosis matrices,
one per influence to a local conflict variable. A new léaf

is pruned if it already contains some conflicts that appear in
some old leaf. At the end of the diagnosis procedure (step
19), the minimal hitting sets, and hence the minimal diag-
noses that explain the system’s misbehaviors, are given by
the set of diagnosis matrices attached to the leaves. Note
that a trivial diagnosis is one that accounts for simultarseo
sensor failures.

The problem of exoneration Generating diagnoses as
presented above is rather conservative since there are influ
ences in the diagnoses that are not manifesting themselves
thoroughly at the level of discrepant outputs. This occurs
whenever an influence belongs to the path to several outputs



1: for Each conflictA; in A (i.e. row)do
2: for Each elemem; . do
3 Initialize the lists new-leavelg]={} and old-
leavefc]={}.
4:  for leafl of HS do
5: A! — diagnosis matrix in leaf.
6: [* creating new leaves (intersection test). */
7: if AL.A; = null vectorthen
8: Build I'; from A;.
9: for Each positive\; . do
10: for Each positivd’. ; do
11: createA — AL A, ; =T, ;.
12: add new nodén, A) to [, and A to new-
leave$c].
13: [* creating old leaves (intersection is singleton)| */
14: if A;.A; has a single positive valuben
15: addA, to old-leavefc].
16: [* closing leaves (inclusion test). */
17: for Each positive elementin T"; do
18: for Each matrixA,, in new-leavfc] do
19: if A, contains somé\, in old-leavefc] then
20: close the branch of the node with,.

Algorithm 2: Minimal Hitting sets with diagnosis matrices.

and that not all of them are discrepant.
Example. GivenZ/ = (10), consider the reduced state

(0000

0100

0000
influence of); on itself. It can be held responsible for the
first joint discrepancy, if a componentin the second joird ha
failed. However, the second joint’'s measure is not disan¢pa
so this makes this diagnosis unlikely.

The elimination of such cases can be dealt with by adopt-
ing theexoneration assumptidn contrast to theo exoner-
ation assumptiofiCordieret al. 2004) :

e no exoneration assumption: the influences that lie on the
path to a discrepant output are potentially identified as
faulty, i.e. they belong to a conflict;

e exoneration assumption: the influences that lie on the path
to a non discrepant output are assumed to be normal.

diagnosis matrixA* ) A3 , corresponds to the

=

GivenZ7, compute conflictd (Alg. 1).

Exoneration:

e ascending variable matrixA°* on non-discrepar
measures (Alg. 1).

e AETO — A@Aok.

Compute Minimal Hitting sets on¢*°. (Alg. 2).

—

3:

Algorithm 3: Computation of diagnosis matrices on exon-
erated conflicts

Note that the adoption of the exoneration assumption re-
quires a thorough analysis of how the faults may manifest
in a system. For instance, it may not be applicable to con-
trolled systems in which the controller compensates for the
faults or to highly non linear systems in which non lineasti

may hide the effect of the faults. The exoneration procedure
can be efficiently implemented by removing from the con-
flicts the variables that affect non-discrepant outputss Eh
done by generating ascending variables that influence non-
discrepant outputs, i.e. gathering the variables thataann
suffer faulty influences for the outputs not to be discrepant
These variables are callednevariables.

Definition 6 (Matrix of sane variables) Given a dis-
crepant output vectorZf, a matrix of sane variables
A°% is a boolean matrix of sizer, x n. such that

ok i f
> A >0if 2z =0
Ag¥ =0, otherwise.

The algorithm for determining.°* is obviously the same
as the conflict generation algorithm 1. The exoneration
comes back to removing from the variable conflict matrix
A all the entries that are 1 in°*, i.e. eliminating all the
sane variables from the variable conflicts. This resulthén t
exonerated variable conflict matrix*° = A © A°. From
there, the hitting set algorithm then performs normally on
the exonerated set of conflicts. Algorithm 3 computes the
diagnosis matrices on exonerated conflicts.

Partial State Hypothesis Filtering

In this section, we rely on the principles of the Uncented
Kalman Filter (UKF) to build a filter that uses diagnoses to
close only on those variables that can be considered unaf-
fected by broken influences. It leaves the set of affecteid var
ables in open loop and lets the uncertainty naturally grow
on these variables. This uncertainty is predicted from the
model, and as such is theoretically sound. We hence derive
asemi-closed loop UKESCL-UKF). This filter accurately
combines the mininal state-space isolation of the previous
section in open loop with a scaled a posteriori error mini-
mization in closed loop.

Unscented Kalman filtering

Consider a discrete-time controlled process that is gagern
by a nonlinear stochastic difference equation (2) and a mea-
surement equation (3).

x(t;) f(@(ti-1),u(ti), w(t;)) )
2(t:) h(z(t:),v(t:)) (3)

x(t;), u(t;), and z(¢t;) have dimensions:,, n,, andn.,
respectively, andw(t;), v(t;) represent the process and
measurement noise and are assumed to be independent,
white and Gaussian with probability distribution§0, @),

N (0, R) respectively. The Unscented Kalman filter (Julier
& Uhlmann 1997) uses the Unscented Transform (UT) and
fully captures the mean and covariance of the state vector
with a minimal set of carefully choosen points, referred to
as sigma points. The filter computes an unbiased estimate
% of the state based on the optimal solution of the least-
squares method (Kalman 1960). The state is a concatena-
tion of the original state and noise variables = [z, w, v]

of dimensionn,. The selection of a cloud of sigma points
applies to the extended state to calculate the sigma matrix



X = [X, X", X"]. Briefly, the state and error covariance
are projected forward through the following equations:

ren SCFED

X(ti-1) = [2*(ti—1) 2% (ti—1) + v/ (na + NP2 (ti-1)]
X(t;) = f(X(ti1), u(ti), X*(t:))
i(t;) =S WX (E)
P(t;7) = WEXG () — a5 ()N () — 25(6)]T
Z(t;) = h(X(ti-1), X" (t:))
A(t;) =W Z(t)

wheret; indicatesa priori values, and/™ and W¢ are
the mean and covariance sigma pomt we|ght vectors respec-
tively. An adaptive gain factof’ minimizes (in the least-

square sense) the error covariance. Noisy measurements are

introduced to compute the posterioristate and covariance
estimates. These steps summarize as:

Po(t;) =Y te WelZi(ty) — £,(0)Z(8) — 2(t;)]
Poo(ty) =0 WelX (1) — a5 (60)1Z(67) — 2(t)]
K =P, P!
&(t:) = &(t;) + K (2(t;) — 2(t;))
P(t;) =P(t;) - KP(t; )K"

Partial variance minimization

For a given diagnosis, we produce a partial estimate that is
not subjected to the effects of faulty influences. This im-
plies:

not using discrepant observations and therefore cangellin
the measurement noise they introduce;

where ef(t*) is an n, dimensional vector such that
el(t7) = e;(t;7) if x; is affected by an influence af, 0
otherwise. From there, the partially updated covariance is
given by

Plts) = S WK (t) — () — (X (1) — 3 ()]
§=0
with
Xi(t) = Xj(t7)+ K(=(t:) — Z;(t;))
Ti(ts) = &) + K(z(t:) — (1))
Tt = X))+ K/ (2(t) = 2] (1))
St = )+ K () - 2 0)
with (z(t;) — Z1(t7)) = (2(t:) — 2/ (7)) = 0 since un-
trusted variablés are predicted, and
L OF . -
X1 (t7) = o7 (X (ti0), &l (t7) = ;Wj X/

where theX? are sigma points for the affected variabfes.
This leads to

P(t;) = P(t7) + PI(t;)
+ KP,(t; )K" —

= T(t7) — (T ()"
KPL(t7) + KPL(t))

= P (t7)K" + PL(ED)KT (6)

where Pf(t") Blef(t7) (e (7)), T/()

E[e(t;) (e (t7))T] andP,., PI, are the cross-covariances.

Minimizing the partial a posteriori error matrix leads to

K(t:) = (Poa(ty) = PL(tE)) P (@)
The a posteriori update is written
P(t;) = P(t;) — KP,(t7) KT 8)

cancelling the effects of faulty influences on sane vari- Hypothesis Testing

ables, i.e. notinfluenced by a faulty influence; The minimal candidate diagnoses generation procedure pro-
cancelling the effects of faulty influences on the untrusted duces many hypotheses. Different hypotheses carry differ-

variables, i.e. influenced by a faulty influence.

The first point is achieved by reducing the output matrix
to non-discrepant observable dimensions only. Second and
third points lead to the cancelling in the gain computation
of the error introduced by the untrusted variables. However
effects of sane variables on the untrusted variables are pre
served. In the following we denote by P, K, - - - the ele-
ments (state, covariance matrix, gain, ...) of the parftakfi

So we have
B(t) + K (1) (1) ) @

Z(t;)
where# are the non-discrepant outpufg, is the reduction
of H to non-discrepant dimension&, the gain that does
not account for the error on the set of untrusted variabtes. |
follows that the a posteriori partially estimated erét; ) is
given by

e(ti)

= — H(#(t7))

ent levels of uncertainty. Observing that relation 6 resgit
P(t;) = P(t7) + PH(t7) = T7(¢7) = (1) (1)
+(PL = P)TKT (9)
and the error introduced by the untrusted state block is
given by

P(t:) = P(t:) = T/ (t7) + (T))"(t7) — P (¢7)
In general, we expect the correct diagnosis to best miti-
gate the growth of uncertainty on the system state. When-
ever this is not the case, we expect a wrong diagnosis to
lead to recurrent detection of the same error. Here we pose
_ P{ti)—P(t:)
P(t;)
minimum tracer (D).

and hence look for the hypothesis with

This is for the UKF, the derivation of the partial minimizati
linear Kalman gain is given in (Bénazéra & Trave-Massg007).

2The partial filter requires the state projection’s partiatiza-
tives, that do not appear in the derivation of the origin&fil



1: initialization: CSD = {z, I}. uncertainty to the estimate. Hypothesis of a second arrh join
2. (&(t;), P(t;)) — Filter(CSD) positioning failure ¢>) is eliminated. _ .
3: Computes (i (t;) 15(&-)) andz/ Lookmg_ at the SCL-UKF as an _hyppthe3|_s driven
4: if there is at Ieaétone discrepant observatiem self-recor!flgurable_ f||t¢r, it wears similarities with Rao-
5. ComputeA, I and diagnoses (Algorithm 3). Blackwelllzed pgrtlcle filters (RBPF) (Doucetal. 2000) as
6: Select diaénosis matrid* = mina (D(A)). it selects behavioral hypotheses. However, the RBPF sam-
7 If A* —— 0 ThenFilter — UKF. ples hypot_heses Whgreas the SCL-UKF logically draws them
8: ElseFilter — UKF with partial minimizationusing from the discrepancies. Also_, .the RBPF would need around
A* 210 hypotheses and a transition model to capture the arm
_ _ _ multiple fault combinations. The SCL-UKF requires partial
Algorithm 4: Semi-closed loop filter (SCL-UKF). derivatives for all hypothesgsbut remains more compact.

Future and related works

: . . We have coupled diagnosis reasoning from first principles
We define a simple fault detector based on a Mahalonobis with Kalman filtering techniques for nonlinear systems. The

distance which is the statistical distance of a point fromfa r result is a novel filter that opens and closes to estimation

erence mean point. We characterize as discrepant the points : ' ; . :
that have 999% chances to lie outsiét; ). Lrsgig\ﬁ;;so?gétsesstate according to logical selection ofdia

Fault Detector

Semi-closed loop filter

Our filter closes a loop on sane variables but runs a pre-
dictive open loop on unstrusted fragments of the system
state. Growing, the uncertainty eventually re-captures th
discrepant measures. When this occurs, it is possible to use
the additional information to mitigate the growth of the a
posteriori error. By scaling the observation space to the re
captured signals, diagnosing, and adapting optimal gains a
cordingly, we build the SCL-UKF (algorithm 4). This fil-

ter uses a mininal state-space isolation in open loop with a
scaled a posteriori error minimization in closed loop.

Related works

In (Hofbaur & Williams 2002b) a partial filter is presented
that uses a decoupling based on causal and structural anal-
ysis of components. However, this scheme only produces
independent filters on different subpart of the whole state,
as it relies on a bidirectional decoupling of trusted/ustied
state and measured variables. (Mcllragthal. 2000) pro-
poses a backward analysis of a causal-graph for producing
diagnose and model fitting to adapt to discrepancies. Like-
wise, adaptive filtering enhances the filter to close on the
observations. In that sense, they do not reveal the true un-
certainty on the state. We believe that maintaining true un-
Results certainty is key to the efficient control of stochastic syste
Our case study is the two-link planar robotic arm presented since it permits for the exploration of a larger but accu-
at the beginning of this paper. We used a numerical simula- rately bounded space. While there are no works that we

tor of the arm movements. know of about intelligent semi-closed loop Kalman filter-
ing, semi-closed loops have been studied in filtering with
Single fault and hypothesis numerically bounded uncertainty in (Armengglal. 2000;

Benazera, Travé-Massuyes, & Dague 2002). Also, the self-
reconfiguration through reasoning from first principles re-
lates to logical filtering (Amir & Russel 2003) as the filtegin
distributes over disjunctions of the belief state (hype#s).

First, we study the SCL-UKF on a single fault and hypoth-
esis. Figure 3 pictures its reaction to an incipient change
in the second link mass, at step40 that leads to a dis-
crepant measure @b. The Hitting-Set algorithm produces
21 non-exonerated diagnose. The filter on figure 3 runs on a ; .
rejection of the measure 6§. Consequently, the filter trusts Future work and possible extensions

and closes on the first joint’s angular positn(3(c)). This We see at least two extensions to our coupling of diagnosis
proves the newly derived gain is able to well decouple the reasoning and filtering techniques. First, improvements of
uncertainty since state variables are otherwise tightly-co  the RBPF have concentrated on the continuous space and a
pled. To estimatd,, 6,, the SCL-UKF switches between  better use of observations (Hutter & Dearden 2003). How-
the UKF and the UKF with partial gain (3(a), 3(b)). On the ever, the RBPF remains limited in the number of modes it
same scenario, a UKF with standard gain closes on the faulty ¢an track. We believe that the subset of modes of interest can

signals with no bulge in the error covariance. be reduced by using reasoning and decoupling techniques
such as ours, and maintaining a hitting set tree of partigle h
Hypothesis testing potheses for example. Second, we look forward embedding

. . . our partial filtering technique into the reinforcement léag
Second, we study the hypothesis testing. Of the 21 diagnose framework, for decision and control, and building on exist-
(hypotheses), most correspond to broken influences on the ing work (Szita & Lorincz 2004);

four state variables. Figure 3(d) picture$D) for these four
hypotheses and the 35 calls to the UKF with partial gain. 31t is not too difficult to symbolically or numerically compait
Discrimination betweefi; andf, is easy:, introduces less the derivatives online.
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Figure 3: Case study: robotic arm effector mass changes@t&tvhile moving its shoulder joint to a reference angle
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