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Abstract

Filtering consists in estimating the value of system state vari-
ables based on available noisy measurements. In Artificial
Intelligence (AI), reasoning from first principles uses logic
to trace back influences among variables and finds minimal
sets that can be held responsible for a given measurement.
Both theories rely on a model of the system, but while filter-
ing implements an error feedback mechanism that closes on
the measurements, reasoning from first principles provides
the ability to localise the causes from the effects. In certain
cases, when a system misbehaves, e.g. the motor in a robotic
arm joint starts failing, the filter is able to detect the drift, but
unable to locate the problem with precision in the state-space.
The ability to break up the filter’s feedback loop in such cases
is exactly the purpose of our approach. We aim at coupling
the localization ability of the theory of diagnosis from first
principles with the state estimation achievement of Kalman
filtering. The targeted result is a novel filter which localizes
the subpart of the system that is misbehaving, isolates its ef-
fects, and keeps tracking a partial state.

Introduction
There exist numerous strategies for tracking the state of a
possibly faulty system, using noisy measurements. The im-
plied stochasticity of the system dynamics together with the
number of faulty situations to account for makes it neces-
sary to track a high number of behavioral hypotheses si-
multaneously. This is typically done by running either a
bank of filters or a cloud of particles (Doucetet al. 2000).
In most cases, the number of trajectories is untractable, or
it is simply counter-productive to track them since many
states are in fact never reached. For this reason, research
has concentrated on ways to drive the filter’s focus on the
subset of relevant hypotheses (Hofbaur & Williams 2002a;
Narasimhan, Dearden, & Bénazéra 2004) and to mitigate
the blowup in tracked states (Hutter & Dearden 2003;
Bénazéra & Travé-Massuyès 2003).

While these strategies are effective in practice, not all hy-
potheses can be modeled, of course, and more so in the case
of fault hypotheses, whose number is potentially infinite.
An alternative is to design a filter that tracks the potentially
unmodeled behaviors. This can be done by fitting parame-
ters to a skeleton model, e.g. using Generalized Likelihood
Ratio or Expectation Maximization (Basseville & Nikiforov

1992). The problem is then to anticipate appropriate skele-
ton models.

In this paper, we adopt a different point of view on the
problem of tracking the state of a system. Our approach is
based on a reference behavior model (e.g. that of nominal
behavior) but instead of closing on all the measurements, we
propose to scale the filter so that it only closes on the part of
the system that can be trusted to correspond to the reference
model. It is necessary that such a filter correctly identifies
the variables that fit the model, leaving the others in open
loop. The filter naturally leaves the uncertainty to grow on
these latter variables. The rational behind it is that the sys-
tem upper controlling layers act locally on the estimated un-
certainty, orlevel of unknowingness, instead of aiming at
identifying a fully fitted model. Building the filtering loop
to this end is challenging.

First, the subpart of the system and corresponding sub-
set of variables whose behavior does not fit the reference
model have to be identified. Although the numerical feed-
back loop that is natural to most filters makes it difficult to
isolate these variables, we argue that they can actually be de-
termined through causal analysis by logically tracing causes
from their effects in the causal structure of the model. In
AI, a logical theory of diagnosis does exist that can just do
that. Diagnosis from first principles (DX) logically infers
the minimal sets of elementary components that can be held
responsible for a discrepancy in the system (Hamscher, Con-
sole, & J. de Kleer 1992). We use the power of this infer-
ence to break up the filter feedback loop after projecting the
component sets on the corresponding sets ofuntrustedvari-
ables. Untrusted variables are hence decoupled from the fil-
ter loop. Second, the estimation step needs to be revised so
that effects of untrusted variables are prevented from affect-
ing themselves andsanevariables, while discrepant mea-
surements must not be used for updating the filter’s innova-
tion.

The aim of this paper is to bring a reasoning layer as well
as a partial covariance minimization scheme into existing
filters, starting with the Unscented Kalman filter that applies
to nonlinear systems. The contribution stands on the idea
of coupling a filtering technique well-known in the Control
diagnosis community (FDI) with logical diagnosis inference
from the AI diagnosis community (DX). It hence fits into the
BRIDGE framework aiming at creating synergies between
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(a) Support to the dynamic
model.
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(b) Causal System Descrip-
tion (CSD) for the robotic
arm.

Figure 1: Two-link planar arm representation.

the FDI and DX communities (Gautamet al. 2004).
The paper is organised as follows. The next section

presents our case study, which is a planar arm with two
joints. The succeeding section overviews the principles of
model based diagnosis and presents how causal models can
be used. This is then interpreted in matricial form, bringing
it back to the same framework as filtering methods, and the
computation methods for deriving conflicts and diagnoses in
this framework are presented. Following is the presentation
of the Unscented Kalman Filter and how it can be modifed
for partial state hypothesis filtering. Finally our semi-closed
loop filter SCL-UKF that accounts for logical diagnosis in-
ference is provided. Early results of the application of SCL-
UKF to the planar arm are given and discussed. The paper
ends with a section discussing related and future works.

Case study
A two-link arm example
Our case study is a two-link planar arm with two joints, at
the shoulder and at the elbow. The state of the system is
represented by a vectorx = ( θ1 θ2 θ̇1 θ̇2 ) whereθ1,θ2 are
the angular positions of the shoulder and elbow joints, re-
spectively. The angular positionsθ1 andθ2 are measured.
m1, m2 are the respective masses of each link. Figure 1(a)
pictures a schematic support to the arm dynamic model of
figure 2. Our model of the arm includes a PD controller,
which allows for the two angular position inputs to be trans-
lated into the input torquesτ1 andτ2. While the model is
simple enough, the number of possible faults is staggering.
Component-wise, both joints can fail, the mass of the second
limb can vary when used to pick up objects. Sensors and the
controller may also fail. State-wise, this corresponds to4
single discrepancies of angular positions and speeds, which
yield 24 multiple faults,26 with sensor faults, and210 with
controller faults. Thus for such a small system, an exhaus-
tive multi-hypothesis filter would require210 hypotheses to
be modelled. In the following, we show how to build a sin-
gle filter that does reconfigure itself instead of relying on

hypotheses to be modelled.

Diagnosis from First Principles
Diagnosis oriented causal modelling
Reasoning about non-linear systems can be supported by a
causal representation of influences among variables. Influ-
ences are a conceptualisation of the links established by the
components between variables in a system. In fact, causal
models have been proposed and shown to be suitable for di-
agnosis in several pieces of work (Biswas & Manders 2006;
Travé-Massuyèset al. 2001; Travé-Massuyès & Calderón-
Espinoza 2007). The model causal structure then acts as
a substitute of dependency recording mechanisms. Causal
models are generally supported by an oriented graph, also
calledCausal Graph, in which nodes represent variables and
edges represent influences from variable to variable. An ori-
ented edge from variablevi to variablevj exists ifvi has an
influence onvj , i.e. if a perturbation on variablevi affects
the value of variablevj . vi andvj are called thecauseand
theeffectvariable of the influence, respectively. Three types
of variables exist to model a system:

• Input variablesare exogenous to the system. Their values
are controlled by the system’s environment and assumed
to be known.nu is the number of input variables.

• Measured or output variablesare known, as provided by a
sensoring device.nz is the number of measured variables.

• State variablesare internal to the model and their values
are not known.nx is the number of internal variables.

Definition 1 (Causal System Description (CSD)). Let
CSD = {V, I} be the causal system description whereV
is the set of variables that define the system, andI the set of
oriented influences that model dependencies.

Conflicts and Diagnoses
Let’s assume that a fault detection mechanism is available
and that it activates an alarm when the measured value (also
called observation) of an output variable is not consistent
with the expected value. Such a discrepancy for a measured
variablez eventually indicates a misbehavior.

Definition 2 (Discrepant output vector). LetZ be the vector
of output variables. The discrepant observation vectorZf is

a vector of sizenz such thatzf
i =

{

1 if zi is discrepant
0 otherwise.

When one or several output variables misbehave, we can
derive all sets of faulty influences that may explain the ob-
servations. The influences that may be at the origin of the
misbehavior of a variablezi are those related to the edges
belonging to the paths going from the measured nodes to the
node representingzi, also calledascending influences. The
set of such influences is aconflictset in the sense of (Reiter
1987). Conflict sets are sets of influences that cannot behave
normally altogether according to the observations. A min-
imal conflict is a conflict that does not strictly include (in
the sense of set inclusion) any conflict. (Reiter 1987) proved
that minimal diagnoses can be computed from minimal con-
flicts.
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=
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Figure 2: Two-link planar arm dynamic model.

Proposition 1 (Minimal Diagnosis (Reiter 1987)). Given a
discrepant observation vectorZf , ∆ ⊆ I is a (minimal)
diagnosis for(CSD,Zf ) iff ∆ is a (minimal) hitting set for
the collection of (minimal) influence conflict sets.

A hitting set of a collection of sets is a set intersecting
every set of this collection.

Determining Candidate Diagnoses
In this section, we first interpret influence conflicts and di-
agnoses in a matricial form, suitable for coupling with the
filtering framework. The computational methods for build-
ing conflictanddiagnosis matricesare then presented.

Conflicts and diagnoses in a matrix framework
The causal graph associated to CSD can be equivalently rep-
resented by an incidence matrixI, of size (nc, nc) with
nc = nx + nu + nz:

I =

(

A B ∅
∅ Iu ∅
H ∅ Iz

)

, with Iij =

{

1 if xi influencesxj

0 otherwise

whereA is of size(nx, nx), B of size(nx, nu), andH of
size (nz, nx). These are incidence matrices that represent
influences among state, input, and output variables, respec-
tively. I reflects the natural hierarchy of influences: inputs
on state, state on measures.Iu andIz are identity matrices
and account for effects due to external causes onto inputs
(e.g. controller) and outputs (e.g. sensors).

Example. Figure 1(b) shows the CSD={V, I} for our case
study, withV =

(

θ1 θ2 θ̂1 θ̂2 τ1 τ2 z1 z2

)

. We have:A =
( 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

)

, B =
( 0 0

0 0
1 0
0 1

)

,

H =
(

1 0 0 0
0 1 0 0

)

andI =





















1 1 1 1|0 0|0 0
1 1 1 1|0 0|0 0
1 1 1 1|1 0|0 0
1 1 1 1|0 1|0 0
0 0 0 0|1 0|0 0
0 0 0 0|0 1|0 0
1 0 0 0|0 0|1 0
0 1 0 0|0 0|0 1





















For a given discrepant output vectorZf , influence conflict
sets may as well be represented in matrix form, as indicated
by the following definition.

Definition 3 (Influence Conflict Matrix). Given a discrepant
output vectorZf , an influence conflict matrixΓ is an inci-
dence matrix of sizenc × nc whose entries correspond to

ascending influences of the discrepant output variables of
Zf .

In the above matrix, all conflicts are represented but it is
difficult to identify each of them and relate them to their
corresponding discrepant output variable. Now, conflicting
influences naturally map onto variables and conversely. In-
deed, influence conflict sets correspond to paths in the causal
graph and a path may as well be represented by the edges
(influences) or by the nodes (variables). This leads to the
following definition.
Definition 4 (Variable Conflict Matrix). Given a discrepant
output vectorZf , a variable conflict matrixΛ is a boolean

matrix of sizenz × nc such that

{

∑

j Λi,j > 0 if z
f
i = 1

Λi,. = 0, otherwise.

Considering a single rowΛi of Λ we know that all state,
input and output variables indicated by a non zero entry in
Λi influence the discrepant outputz

f
i . This implies that at

least one of these variables has to suffer a faulty influence
to cause the discrepancy onzf

i . Hence this set of variables
can equivalently represent the influence conflict.By suffer a
faulty influencewe mean that in the physical system, there
must exist at least one influence on this variable whose ef-
fect on the discrepant output is incorrectly captured by the
reference model. This set of variables is called avariable
conflict set.A minimal variable conflict matrix is a matrix
whose variable sets indicated by 1-valued entries on each
row do not strictly include (in the sense of set inclusion) any
variable conflict. Therefore a minimal conflict matrix indi-
cates minimal variable conflicts only. Finally, we define the
diagnosis matrix as follows.
Definition 5 (Diagnosis matrix). Given a discrepant mea-
surement vectorZf , a diagnosis matrix∆ is an influence
incidence matrix of sizenc × nc in which at least one faulty
influence represented by a 1-value entry accounts for each
discrepant measure ofZf .
Example. Consider the arm’s shoulder joint mea-
sure is discrepant, soZf = (1 0). Λ =
(

1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0

)

,

Γ =





















1 1 1 1|0 0|0 0
1 1 1 1|0 0|0 0
1 1 1 1|1 0|0 0
1 1 1 1|0 1|0 0
0 0 0 0|1 0|0 0
0 0 0 0|0 1|0 0
1 0 0 0|0 0|1 0
0 1 0 0|0 0|0 0























are the conflict matrices of variables and influences, respec-
tively. ∆ with all entries equal to 0 but∆1,1 = 1 is a possi-
ble diagnosis matrix.

Computing Conflict Matrices
The discrepant output vector leads to the identification of the
matrix of conflicting influences. This section is concerned
with the computational methods for building the conflict and
diagnosis matrices defined above.

We suppose a discrepant output vectorZf . Hf (of size
nz × nx) is obtained by selecting the rows ofH that corre-
spond to positive values ofZf and zeroing the others.Hf

tells which state variables directly affect the discrepantout-
puts. Effects of state variables on other state variables are
taken into account by the matrixA. Thus we dubXf,1 =
HfA thediscrepant state influence matrix. In other words,
variablexi influences outputzj iff X

f,1
j,i 6= 0. However,

Xf,1 expresses direct influences of the state on the outputs.
Upstream influences can be captured iterating onA, i.e. by
Xf,2 = Xf,1A. And so on fork steps,Xf,k = HfAk, un-
til (A)k+1 = (A)k. State variable conflicts are made of all
influences from state variables onto outputs, thus

Xf = Hf +

k
∑

i=1

Hf (A)k (1)

Herek is such that(A)k+1 = (A)k. We define the input in-
fluence matrixBf = XfB whereB

f
j,i 6= 0 implies that in-

putui influences outputzj. Finally the matrixIf (obtained
from the identity matrix of sizenz by keeping the ones cor-
responding toZf ) is used to account for sensor failures.

Example. As before, considerZf = (1 0). Therefore
Hf =

(

1 0 0 0
0 0 0 0

)

. A2 = Ix, andXf =
(

1 1 1 1
0 0 0 0

)

, Bf =
(

1 1
0 0

)

, I
f =

(

1 0
0 0

)

.

Now, we can build the variable conflict matrixΛ as
the concatenation of matrices(Xf , Bf , If ). Following the
consistency-based theory presented above,Λ is the conflict
matrix because each of its rows indicates an influencecon-
flict.

Example. Following up on our example:

Λ =

(

1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0

)

Algorithm 1 sums up the steps of the automated genera-
tion of Λ.

1: Build Hf from the discrepant lines ofH .
2: Compute powers ofA.
3: ComputeXf .
4: ComputeBf .
5: Build Λ← (Xf , Bf , If ).

Algorithm 1: Conflict generation.

Proposition 2 (Minimal Conflict matrix). Given a dis-
crepant output vectorZf , Λ is the minimal conflict matrix
w.r.t. Zf .

Proof. The conflict matrix of variablesΛ contains all vari-
ables that can held responsible for a discrepant variable. In
a graph theoretic framework, the matrix of conflicting influ-
encesΓ contains all edges that belong to paths from input,
state and output vertices to the discrepant vertices. Pathsof
increasing lengths correspond to the powers1 to k of the in-
cidence matrixA. Considering a pathpi in this graph, and
assuming that one influenceIr is removed, leads to a sub-
pathspi. Thenspi is no conflict since ifIr is faulty, all the
influences inspi can be normal, the discrepancy being hence
explained byIr only. The same applies to any subpath ofpi,
meaning thatpi corresponds to a minimal conflict.

Computing diagnosis matrices

Hitting sets based computation From the previous sec-
tion it comes that the logical theory of diagnosis allows for
the generation of the diagnosis candidates through the com-
putation of the hitting sets.

Computing the diagnoses comes back to computing the
hitting sets of the subset of variables indicated by each row
of Λ. This computation returns the set of diagnosis matri-
ces. An incremental algorithm to generate all the minimal
hitting sets based on a set of conflicts was originally pro-
posed by (Reiter 1987), then corrected by (Greiner, Smith, &
Wilkerson 1989). This algorithm gives a means to compute
diagnoses incrementally, under the permanent fault assump-
tion. It builds a Hitting-Set tree (HS-tree) in which leaves
contain the minimal diagnose. Like in (Travé-Massuyès &
Calderón-Espinoza 2007), we refer to the algorithm version
by (Levy 1991) which is more efficient than the original one
because it uses less comparisons at each step. We imple-
ment a version of the algorithm where diagnoses are given
by matrices, and where edges need not to be labelled.

Algorithm 2 begins with a treeHS consisting of a sim-
ple root, with an attached empty diagnosis matrix. Each tree
noden supports a diagnosis matrix that records entries that
solve the conflicts from the root node ton. The algorithm
takes conflicts (vector rows ofΛ) in an arbitrary order. For
every conflictΛi and every elementΛi,c of the conflict, the
algorithm builds two lists,newleaves[c] and oldleaves[c]
(step 3). New leaves to a leafl are created wheneverΛi is not
already into∆l. Intersection test is a matrix operation that
maps influences diagnose onto conflicting variables (step 7).
The conversion from state conflicts to influence conflicts is
done at step 8. Step 10 creates the local diagnosis matrices,
one per influence to a local conflict variable. A new leafl
is pruned if it already contains some conflicts that appear in
some old leaf. At the end of the diagnosis procedure (step
19), the minimal hitting sets, and hence the minimal diag-
noses that explain the system’s misbehaviors, are given by
the set of diagnosis matrices attached to the leaves. Note
that a trivial diagnosis is one that accounts for simultaneous
sensor failures.

The problem of exoneration Generating diagnoses as
presented above is rather conservative since there are influ-
ences in the diagnoses that are not manifesting themselves
thoroughly at the level of discrepant outputs. This occurs
whenever an influence belongs to the path to several outputs



1: for Each conflictΛi in Λ (i.e. row)do
2: for Each elementΛi,c do
3: Initialize the lists new-leaves[c]={} and old-

leaves[c]={}.
4: for leaf l of HS do
5: ∆l ← diagnosis matrix in leafl.
6: /* creating new leaves (intersection test). */
7: if ∆l.Λi = null vectorthen
8: Build Γi from Λi.
9: for Each positiveΛi,c do

10: for Each positiveΓc,j do
11: create∆← ∆l. ∆c,j = Γc,j.
12: add new node(n, ∆) to l, and∆ to new-

leaves[c].
13: /* creating old leaves (intersection is singleton). */
14: if ∆l.Λi has a single positive valuethen
15: add∆l to old-leaves[c].
16: /* closing leaves (inclusion test). */
17: for Each positive elementc in Γi do
18: for Each matrix∆n in new-leave[c] do
19: if ∆n contains some∆o in old-leaves[c] then
20: close the branch of the node with∆n.

Algorithm 2: Minimal Hitting sets with diagnosis matrices.

and that not all of them are discrepant.

Example. GivenZf =
(

1 0
)

, consider the reduced state

diagnosis matrix∆x =
( 0 0 0 0

0 1 0 0
0 0 0 0
0 0 0 0

)

. ∆x
2,2 corresponds to the

influence ofθ2 on itself. It can be held responsible for the
first joint discrepancy, if a component in the second joint has
failed. However, the second joint’s measure is not discrepant
so this makes this diagnosis unlikely.

The elimination of such cases can be dealt with by adopt-
ing theexoneration assumptionin contrast to theno exoner-
ation assumption(Cordieret al. 2004) :

• no exoneration assumption: the influences that lie on the
path to a discrepant output are potentially identified as
faulty, i.e. they belong to a conflict;

• exoneration assumption: the influences that lie on the path
to a non discrepant output are assumed to be normal.

1: GivenZf , compute conflictsΛ (Alg. 1).
2: Exoneration:
• ascending variable matrixΛok on non-discrepant

measures (Alg. 1).
• Λexo = Λ⊖ Λok.

3: Compute Minimal Hitting sets onΛexo. (Alg. 2).

Algorithm 3: Computation of diagnosis matrices on exon-
erated conflicts

Note that the adoption of the exoneration assumption re-
quires a thorough analysis of how the faults may manifest
in a system. For instance, it may not be applicable to con-
trolled systems in which the controller compensates for the
faults or to highly non linear systems in which non linearities

may hide the effect of the faults. The exoneration procedure
can be efficiently implemented by removing from the con-
flicts the variables that affect non-discrepant outputs. This is
done by generating ascending variables that influence non-
discrepant outputs, i.e. gathering the variables that cannot
suffer faulty influences for the outputs not to be discrepant.
These variables are calledsanevariables.

Definition 6 (Matrix of sane variables). Given a dis-
crepant output vectorZf , a matrix of sane variables
Λok is a boolean matrix of sizenz × nc such that
{

∑

j Λok
i,j > 0 if z

f
i = 0

Λok
i,. = 0, otherwise.

The algorithm for determiningΛok is obviously the same
as the conflict generation algorithm 1. The exoneration
comes back to removing from the variable conflict matrix
Λ all the entries that are 1 inΛok, i.e. eliminating all the
sane variables from the variable conflicts. This results in the
exonerated variable conflict matrixΛexo = Λ⊖ Λok. From
there, the hitting set algorithm then performs normally on
the exonerated set of conflicts. Algorithm 3 computes the
diagnosis matrices on exonerated conflicts.

Partial State Hypothesis Filtering
In this section, we rely on the principles of the Uncented
Kalman Filter (UKF) to build a filter that uses diagnoses to
close only on those variables that can be considered unaf-
fected by broken influences. It leaves the set of affected vari-
ables in open loop and lets the uncertainty naturally grow
on these variables. This uncertainty is predicted from the
model, and as such is theoretically sound. We hence derive
a semi-closed loop UKF(SCL-UKF). This filter accurately
combines the mininal state-space isolation of the previous
section in open loop with a scaled a posteriori error mini-
mization in closed loop.

Unscented Kalman filtering
Consider a discrete-time controlled process that is governed
by a nonlinear stochastic difference equation (2) and a mea-
surement equation (3).

x(ti) = f(x(ti−1), u(ti), w(ti)) (2)

z(ti) = h(x(ti), v(ti)) (3)

x(ti), u(ti), and z(ti) have dimensionsnx, nu, and nz,
respectively, andw(ti), v(ti) represent the process and
measurement noise and are assumed to be independent,
white and Gaussian with probability distributionsN (0, Q),
N (0, R) respectively. The Unscented Kalman filter (Julier
& Uhlmann 1997) uses the Unscented Transform (UT) and
fully captures the mean and covariance of the state vector
with a minimal set of carefully choosen points, referred to
as sigma points. The filter computes an unbiased estimate
x̂ of the state based on the optimal solution of the least-
squares method (Kalman 1960). The state is a concatena-
tion of the original state and noise variablesxa = [x, w, v]
of dimensionna. The selection of a cloud of sigma points
applies to the extended state to calculate the sigma matrix



Xa = [X, Xw, Xv]. Briefly, the state and error covariance
are projected forward through the following equations:

P a(ti−1) =
( P (ti−1) 0 0

0 Pw 0
0 0 Pv

)

Xa(ti−1) = [x̂a(ti−1)x̂
a(ti−1) +

√

(na + λ)P a(ti−1)]

X(t−i ) = f(Xa(ti−1), u(ti), X
w(ti))

x̂(t−i ) =
∑2na

j=0 Wm
j X(t−i )

P (t−i ) =
∑2na

j=0 W c
j [Xj(t

−

i )− x̂j(t
−

i )][Xj(t
−

i )− x̂j(t
−

i )]T

Z(t−i ) = h(X(ti−1), X
v(ti))

ẑ(t−i ) =
∑2na

j=0 Wm
j Z(t−i )

wheret−i indicatesa priori values, andWm and W c are
the mean and covariance sigma point weight vectors respec-
tively. An adaptive gain factorK minimizes (in the least-
square sense) the error covariance. Noisy measurements are
introduced to compute thea posterioristate and covariance
estimates. These steps summarize as:

Pz(ti) =
∑2na

j=0 W c
j [Zj(t

−

i )− ẑj(t
−

i )][Zj(t
−

i )− ẑj(t
−

i )]T

Pxz(t
−

i ) =
∑2na

j=0 W c
j [Xj(t

−

i )− x̂j(t
−

i )][Zj(t
−

i )− ẑj(t
−

i )]T

K = PxzP
−1
z

x̂(ti) = x̂(t−i ) + K(z(ti)− ẑ(t−i ))

P (ti) = P (t−i )−KP (t−i )KT

Partial variance minimization
For a given diagnosis, we produce a partial estimate that is
not subjected to the effects of faulty influences. This im-
plies:

• not using discrepant observations and therefore cancelling
the measurement noise they introduce;

• cancelling the effects of faulty influences on sane vari-
ables, i.e. not influenced by a faulty influence;

• cancelling the effects of faulty influences on the untrusted
variables, i.e. influenced by a faulty influence.

The first point is achieved by reducing the output matrix
to non-discrepant observable dimensions only. Second and
third points lead to the cancelling in the gain computation
of the error introduced by the untrusted variables. However,
effects of sane variables on the untrusted variables are pre-
served. In the following we denote by̆x, P̆ , K̆, · · · the ele-
ments (state, covariance matrix, gain, ...) of the partial filter.
So we have

x̆(ti) = x̆(t−i ) + K̆(ti)
(

z̆(ti)− H̆(x̆(t−i ))
)

(4)

wherez̆ are the non-discrepant outputs,H̆ is the reduction
of H to non-discrepant dimensions,̆K the gain that does
not account for the error on the set of untrusted variables. It
follows that the a posteriori partially estimated errorĕ(ti) is
given by

ĕ(ti) = x(ti)− x̆(ti)

= ĕ(t−i ) + K̆(ti)
(

v(ti)− H̆(ĕ(t−i )− ef (t−i ))
)

(5)

where ef (t−i ) is an nx dimensional vector such that
e

f
j (t−i ) = ej(t

−

i ) if xj is affected by an influence of∆, 0
otherwise. From there, the partially updated covariance is
given by1

P̆ (ti) =

2na
∑

j=0

W c
j [(X̂j(ti)− x̂j(ti))− (X̂f

j (ti)− x̂
f
j (ti))]

T

with


















X̂j(ti) = X̂j(t
−

i ) + K̆(z(ti)− Ẑj(t
−

i ))

x̂j(ti) = x̂j(t
−

i ) + K̆(z(ti)− ẑj(t
−

i ))

X̂
f
j (ti) = X̂

f
j (t−i ) + K̆f(z(ti)− Ẑ

f
j (t−i ))

x̂
f
j (ti) = x̂

f
j (t−i ) + K̆f (z(ti)− ẑ

f
j (t−i ))

with (z(ti) − Ẑ
f
j (t−i )) = (z(ti) − ẑ

f
j (t−i )) = 0 since un-

trusted variables are predicted, and

X̂f (t−i ) =
∂F

∂Xf
(X̂(ti−1)), x̂f (t−i ) =

2L
∑

j=0

Wm
j X

f
j

where theXf
j are sigma points for the affected variables.2

This leads to

P̆ (ti) = P̆ (t−i ) + P̆ f (t−i )− T f(t−i )− (T f (t−i ))T

+ K̆P̆z(t
−

i )K̆T − K̆P̆T
xz(t

−

i ) + K̆P̆ f
xz(t

−

i )

− P̆xz(t
−

i )KT + P̆ f
xz(t

−

i )K̆T (6)

where P̆ f (t−i ) = E[ef (t−i )(ef (t−i ))T ], T f(t−i ) =

E[ĕ(t−i )(ef (t−i ))T ] andP̆xz , P̆ f
xz are the cross-covariances.

Minimizing the partial a posteriori error matrix leads to

K̆(ti) = (P̆xz(t
−

i )− P̆ f
xz(t

−

i ))P̆−1
z (7)

The a posteriori update is written

P (ti) = P (t−i )− K̆P̆z(t
−

i )K̆T (8)

Hypothesis Testing
The minimal candidate diagnoses generation procedure pro-
duces many hypotheses. Different hypotheses carry differ-
ent levels of uncertainty. Observing that relation 6 rewrites

P̆ (ti) = P̆ (t−i ) + P̆ f (t−i )− T f(t−i )− (T f )T (t−i )

+ (P̆ f
xz − P̆xz)

T K̆T (9)

and the error introduced by the untrusted state block is
given by

P (ti)− P̆ (ti) = T f(t−i ) + (T f)T (t−i )− P̆ f (t−i )

In general, we expect the correct diagnosis to best miti-
gate the growth of uncertainty on the system state. When-
ever this is not the case, we expect a wrong diagnosis to
lead to recurrent detection of the same error. Here we pose

D = P (ti)−P̆ (ti)

P̆ (ti)
and hence look for the hypothesis with

minimum tracetr(D).

1This is for the UKF, the derivation of the partial minimization
linear Kalman gain is given in (Bénazéra & Travé-Massuy`es 2007).

2The partial filter requires the state projection’s partial deriva-
tives, that do not appear in the derivation of the original filter.



1: initialization: CSD = {x, I}.
2: (x̆(ti), P̆ (ti))← Filter(CSD).
3: Computeδ(x̆(ti), P̆ (ti)) andZf .
4: if there is at least one discrepant observationthen
5: ComputeΛ, Γ and diagnoses (Algorithm 3).
6: Select diagnosis matrix∆∗ = min∆(D(∆)).
7: If ∆∗ == 0 ThenFilter ← UKF.
8: ElseFilter ← UKF with partial minimizationusing

∆∗.

Algorithm 4: Semi-closed loop filter (SCL-UKF).

Fault Detector
We define a simple fault detector based on a Mahalonobis
distance which is the statistical distance of a point from a ref-
erence mean point. We characterize as discrepant the points
that have 99% chances to lie outsideP (t−i ).

Semi-closed loop filter
Our filter closes a loop on sane variables but runs a pre-
dictive open loop on unstrusted fragments of the system
state. Growing, the uncertainty eventually re-captures the
discrepant measures. When this occurs, it is possible to use
the additional information to mitigate the growth of the a
posteriori error. By scaling the observation space to the re-
captured signals, diagnosing, and adapting optimal gains ac-
cordingly, we build the SCL-UKF (algorithm 4). This fil-
ter uses a mininal state-space isolation in open loop with a
scaled a posteriori error minimization in closed loop.

Results
Our case study is the two-link planar robotic arm presented
at the beginning of this paper. We used a numerical simula-
tor of the arm movements.

Single fault and hypothesis
First, we study the SCL-UKF on a single fault and hypoth-
esis. Figure 3 pictures its reaction to an incipient change
in the second link massm2 at step40 that leads to a dis-
crepant measure ofθ2. The Hitting-Set algorithm produces
21 non-exonerated diagnose. The filter on figure 3 runs on a
rejection of the measure ofθ2. Consequently, the filter trusts
and closes on the first joint’s angular positionθ1 (3(c)). This
proves the newly derived gain is able to well decouple the
uncertainty since state variables are otherwise tightly cou-
pled. To estimateθ2, θ̇2, the SCL-UKF switches between
the UKF and the UKF with partial gain (3(a), 3(b)). On the
same scenario, a UKF with standard gain closes on the faulty
signals with no bulge in the error covariance.

Hypothesis testing
Second, we study the hypothesis testing. Of the 21 diagnose
(hypotheses), most correspond to broken influences on the
four state variables. Figure 3(d) picturestr(D) for these four
hypotheses and the 35 calls to the UKF with partial gain.
Discrimination betweeṅθ1 andθ̇2 is easy:θ̇2 introduces less

uncertainty to the estimate. Hypothesis of a second arm joint
positioning failure (θ2) is eliminated.

Looking at the SCL-UKF as an hypothesis driven
self-reconfigurable filter, it wears similarities with Rao-
Blackwellized particle filters (RBPF) (Doucetet al. 2000) as
it selects behavioral hypotheses. However, the RBPF sam-
ples hypotheses whereas the SCL-UKF logically draws them
from the discrepancies. Also, the RBPF would need around
210 hypotheses and a transition model to capture the arm
multiple fault combinations. The SCL-UKF requires partial
derivatives for all hypotheses3, but remains more compact.

Future and related works
We have coupled diagnosis reasoning from first principles
with Kalman filtering techniques for nonlinear systems. The
result is a novel filter that opens and closes to estimation
fragments of its state according to logical selection of diag-
nosis hypotheses.

Related works
In (Hofbaur & Williams 2002b) a partial filter is presented
that uses a decoupling based on causal and structural anal-
ysis of components. However, this scheme only produces
independent filters on different subpart of the whole state,
as it relies on a bidirectional decoupling of trusted/untrusted
state and measured variables. (McIlraithet al. 2000) pro-
poses a backward analysis of a causal-graph for producing
diagnose and model fitting to adapt to discrepancies. Like-
wise, adaptive filtering enhances the filter to close on the
observations. In that sense, they do not reveal the true un-
certainty on the state. We believe that maintaining true un-
certainty is key to the efficient control of stochastic systems
since it permits for the exploration of a larger but accu-
rately bounded space. While there are no works that we
know of about intelligent semi-closed loop Kalman filter-
ing, semi-closed loops have been studied in filtering with
numerically bounded uncertainty in (Armengolet al. 2000;
Benazera, Travé-Massuyès, & Dague 2002). Also, the self-
reconfiguration through reasoning from first principles re-
lates to logical filtering (Amir & Russel 2003) as the filtering
distributes over disjunctions of the belief state (hypotheses).

Future work and possible extensions
We see at least two extensions to our coupling of diagnosis
reasoning and filtering techniques. First, improvements of
the RBPF have concentrated on the continuous space and a
better use of observations (Hutter & Dearden 2003). How-
ever, the RBPF remains limited in the number of modes it
can track. We believe that the subset of modes of interest can
be reduced by using reasoning and decoupling techniques
such as ours, and maintaining a hitting set tree of particle hy-
potheses for example. Second, we look forward embedding
our partial filtering technique into the reinforcement learning
framework, for decision and control, and building on exist-
ing work (Szita & Lorincz 2004);

3It is not too difficult to symbolically or numerically compute
the derivatives online.



−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100

99% a posteriori error interval
measure

non faulty behavior (witness)
mean

(a) Angle of the elbow joint (time,
θ2).

−150

−100

−50

 0

 50

 100

 150

 0  20  40  60  80  100

99% a posteriori error interval
non faulty behavior (witness)

mean

(b) Angular speed of the elbow joint
(time, θ̇2).

 0

 1

 2

 3

 4

 5

 6

 7

 0  20  40  60  80  100

99% a posteriori error interval
measure
non faulty behavior (witness)
mean

(c) Angle of the shoulder
joint (time,θ1).

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 1e+18

 0  5  10  15  20  25  30  35

θ1

θ2

θ̇1

θ̇2

(d) Hypothesis testing (calls,
log(tr(D))).

Figure 3: Case study: robotic arm effector mass changes at step40 while moving its shoulder joint to a reference angleπ.
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