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Abstract

Model-based diagnosis is now advanced to the point au-
tonomous systems nowadays face certain uncertain and faulty
situations with success. The next step toward even more au-
tonomy is to have the system recovering itself after faults oc-
cur, a process known asmodel-based reconfiguration. After
faults occurred, given a prediction of the nominal behavior
of the system and the result of the diagnosis operation, this
paper proposes to automatically determine thefunctional de-
ficienciesof the system. These deficiencies are characterized
in the case of uncertain state estimates. A methodology is
then presented to determine the reconfiguration goals based
on the deficiencies. Finally, a recovery process interleaves
planning and model predictive control to restore the deficien-
cies in prioritized order.

Introduction
Model-based autonomous systems already face faulty situ-
ations with some success: they detect and diagnose faults
by either identifying potential candidates to their own phys-
ical state (Hofbaur and Williams 2002) or reasoning on their
structural and behavioral knowledge (Hamscheret al. 1992).
The next step toward even more autonomy is to have the sys-
tem recovering itself after faults occur, a process known as
model-based reconfiguration1 (MBR). Automated reconfig-
uration comprehends three steps: goal identification, goal
selection, recovery.Goal identificationsearches for a set
of potential states of the system where the fault effects are
inhibited; goal selectionis the process of deciding the best
of these states, denoted goal states;recoverysearches for
the chain of actions that may turn the physical system state
into the desired goal states. Recent architecture design for
autonomy (Muscettolaet al. 1998) puts the goal identifi-
cation and selection processes outside the scope of a model-
based diagnoser, in the hands of upper decisional levels. The
aim of this paper is to produce an automated goal identifica-
tion/selection/recovery methodology that takes better advan-
tage of the system model. Due to several factors, MBR is a
challenging problem:

• The state of the system cannot be uniquely determined in
all situations. Recent model-based monitoring/diagnosis
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1For now, most embedded controllers include pre-compiled re-

covery policies as part of a rule-based system.

systems tracks several potential non-faulty/faulty statees-
timates simultaneously (Nayak and Kurien 2000; Benaz-
era and Travé-Massuyès 2003). Moreover, the set of state
estimates is the result of a selection process as the total
number of possible states is too large to be explored. The
ambiguity is however mitigated by the fact that the num-
ber of state estimates is typically small.

• Faults effects may differ from one estimate to the other.
For this reason, pre-compiled policies may fail recovering
the system by proposing an improper command when the
state is uncertain.

• Nowadays, embedded digitally controlled systems have
complex behaviors characterized by a preeminence of dis-
crete switches in their dynamics. They are modeled as
hybrid systems, that exhibit both discrete and continuous
dynamics.

The main idea that is developed in this paper is that when
you lose your marbles, your first try is to recover them. Re-
ferring to thefaulty statesas the estimates that result from
the diagnosis operation, as opposed to the nominallypre-
dicted states, we propose to compare the faulty states and
the predicted states and thus determine thefunctional de-
ficienciescaused by the faults. In this context, functional
deficiencies are variable instances in one or more predicted
states and that have beenlost in one or more faulty states.
Our approach seeks to minimize the size of a functionality
to recover while maximizing its coverage of the estimates.
The contributions of this paper are threefold. First, we show
how this strategy leads to a finite set of disjoint functional
deficiencies, and characterize them. Second, we propose a
methodology to identify potential goals from the deficien-
cies based on a productive analogy with model-based diag-
nosis, reasoning at a single point in time, despite the sys-
tem continuous dynamics. Third, we show how to inter-
leave conformant planning and model predictive control to
bring the system’s hybrid dynamics from the initial potential
faulty states to the potential goals states.

Hybrid Model-Based State Prediction and
Diagnosis

In this section we introduce a comprehensive formalization
of model, state and uncertainty. The autonomous system is



considered a model-based system, i.e. that has a structural
and behavioral knowledge of itself.

Definition 1 (Model-Based System).A model-based sys-
temA is a tuple(C,M, T ,X , E), whereC is a set of mod-
eled components,M a set of finite discrete variables as com-
ponent behavioral modes,T a set of transitions among these
modes,X the set of continuous variables andE a set of con-
tinuous static/differential equations overX .

In this paper we use a hybrid description of the physical sys-
tem’s state. Thehybrid states is the tuple(M, X). Instances
of variablesv ∈M ∪X are noted(v = vj), or vj for short.
The hybrid state’s discrete side abstracts the physical system
as a set of mode instancesM =

∧

k Ck.mik whereCk.mik

is an instance of a variablem ∈ M of componentCk ∈ C.
The continuous stateX is made of instancesxj of continu-
ous variables ofX . Observed instances are notedY , andỸ
denotes the measured values. Commands are notedU . We
consider a discrete-time model of the form:

E :







X(k + 1) = f
(

X(k), U(k)
)

Y (k) = g
(

X(k), U(k)
)

0 ≤ h
(

X(k), U(k)
)

(1)

SystemA’s behavior is described with rules of the form
∧

i ei if φ, whereei ∈ E andφ is a conjunction of equali-
ties/inequalities over functions of variables inM ∪X . A set
T = {τ1, · · · , τnm

} of transitions is specified for each mode
m. Each transitionτ is enabled according to a guardφ, and
may trigger with probabilityp(τ) whenever the guard is sat-
isfied. T (si, sj) denotes the set of transitions that movesA
from si to sj .

Given the abilityA has to predict and diagnose its own
behavior, we respectively noteP(A) the prediction of the
hybrid system’s nominal states, andD(A) the diagnosis
result after faults occur. Note that when fault modes are
present, the diagnosis may become an identification prob-
lem, andP(A), D(A) may result from the same engine.
Uncertainty on the physical system’s state imposes to con-
siderP(A) andD(A) as sets of hybrid states. We denote
S =

(

P(A),D(A)
)

.

Example (Pressure regulator).Figure 1 pictures our case
study: a two valves system that regulates water pressure be-
tween flow entryQ0 and flow outputQ. An electric switchS
powers valveV2 when pressureP0 equals or exceeds thresh-
old P ∗. V2 opens when powered.S, V1 and V2 have two
nominal operational modesopenandclosed, and two faulty
modesstuckclosed, stuckopen. Q0 andQ are measured.
P0 is the single input to the system.

Our scenario supposes faults occur when the prediction
of the nominal state is uncertain2, i.e. the uncertainty on
the pressure does not allow to discriminate between two
predicted states3:

2This corresponds to the general case of tracking multiple states
simultaneously.

3Flows > 0 are abstracted from their real values for an im-
proved readability.
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Pi = Patm

Qi = kiSi

√
P0 − Pi if φi

Qi = 0 if ¬φi

φi: P0 ≥ Pi

∧ (Vi.m = open ∨ Vi.m = stuck open)

τ1: V2.m = closed ∧ S.m=closed→ V2.m = open
τ2: V2.m = open ∧ S.m=open→ V2. = closed

S

{

τ3: S.m = open ∧ (P0 ≥ P ∗)→ S.m = closed
τ4: S.m = closed ∧ (P0 < P ∗)→ S.m = open

Connection:Q0 = Q = Q1 + Q2

Figure 1: Pressure regulator
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Q0 > 0

P0 < P∗

V1.m = open

S.m = open

V2.m = closed

Q1 > 0

Q2 = 0

Q > 0
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Q0 > 0

P0 ≥ P∗

V1.m = open

S.m = closed

V2.m = open

Q1 > 0

Q2 > 0

Q > 0

After observingQ0 > 0∧Q = 0, A returns diagnose, based
on the knowledge of the nominal states above:
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Q0 > 0

P0 < P∗

V1.m = stuck closed

S.m = open

V2.m = closed

Q1 = 0

Q2 = 0

Q = 0

, s
2

F :

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

Q0 > 0

P0 ≥ P∗

V1.m = stuck closed

S.m = closed

V2.m = stuck closed
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Q = 0
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Q0 > 0

P0 ≥ P∗

V1.m = stuck closed

S.m = stuck open

V2.m = closed

Q1 = 0

Q2 = 0

Q = 0

s1
F is the faulty state diagnosed froms1

N while s2
F ands3

F

have been deduced froms2
N . Hybrid states inP(A) =

(s1
N , s2

N) andD(A) = (s1
F , s2

F , s3
F ) contain enough infor-

mation for the autonomous system to extract itsfunctional
deficiencies.



Functional Deficiencies

Given a belief on a model-based systemA, we extendP(A)
andD(A) by the states probabilities such thatP(A) =
((s1

N , p(s1
N )), · · · , (sn

N , p(sn
N ))) is the set of then nomi-

nally predicted states, and their associated probabilities, and
D(A) = ((s1

F , p(s1
F )), · · · , (sf

F , p(sf
F ))) the set off faulty

states from diagnosis, and their attached probabilities. Given
a variablev, we notes(v) its value in states. Any set of
nominal and faulty states inS is denoted areconfiguration
set. We want to find a setF of prioritized variable instances
in M ∪X that are the functional deficiencies between states
in P(A) andD(A), and thus need to be recovered. The gen-
eral idea that is developed in this section has been inspired
by the model-based reconfiguration of logical functions in
(Stumptner and Wotawa 1999).

Deficient variable instances

Given two states(sN , sF ) respectively fromP(A) and
D(A), and a variablev, we noteL

(

sN (v), sF (v)
)

the mea-
sure of the common ground ofv’s value in each state.
We say that the value ofv in sN is deficientin sF when
L

(

sN(v), sF (v)
)

is smaller than the mean measure of the
estimates overmisbehavingobserved variables that corre-
spond to the same statessN andsF , i.e.:

L
(

sN (v), sF (v)
)

≤
∑

y∈Ymisb
L

(

sN (y), sF (y)
)

nbr(Ymisb)
(2)

wherenbr(Ymisb) is the number of misbehaving observed
variables. A misbehavingy is an observed variable that led
to the fault detection. Its value insF better fitỹ than its value
in sN . When relation 2 is satisfied, we sayL

(

sN (v), sF (v)
)

is deficient. The definition ofL depends on the nature of the
variables and the expression of the uncertainty in the model.

In the case variables domains are discrete, as in (Williams
and Nayak 1996), variable instances have attached boolean
labels. Misbehaving variables are observables labeled1
in sN and 0 in sF . We set upL

(

sN(v), sF (v)
)

= 1 −
(

lab(sN(v)) − lab(sF (v)
)

, wherelab returns the label of
a given instance. This case also applies to the measure of
mode deficiencies.

In case variables instances are numerical intervals, as in
(Benazera and Travé-Massuyès 2003), a misbehaving ob-
served variableo is such thatsN(y) ∩ ỹ = ∅. We use
L

(

sN(v), sF (v)
)

= sN (v) ∩ sF (v).
In case a variable estimate is represented with a Gaussian

law, as in (Hutter and Dearden 2003), we sayy is misbehav-
ing if p(ỹ | sF )p

(

T (sN , sF )
)

≥ p(ỹ | sN ), i.e. if its like-
lihood is higher in the diagnosed estimate than in the nomi-
nally predicted one, given the probability of changing mode.
Herep

(

T (sN , sF )
)

= p
(

sN (φ1, · · · , φr)
)
∏

i=1,··· ,r p(τi).
Given thatsN ∼ N (mN , θN ) andsF ∼ N (mF , θF ), we
defineL as the measure of the common space enclosed by
both density functionsfN , fF . Givenv1, v2 the two inter-
section points of these curves, and considering thatθF ≥ θN

(otherwise, the notations are inversed):

L
(

sN (v), sF (v)
)

=

∫ v1

−∞

fN (v)dv+

∫ v2

v1

fF (v)dv +

∫ +∞

v2

fN (v)dv (3)

v1, v2 are solutions offN(v) = fF (v), that is a second de-
gree polynomial forfN , fF Gaussian densities. In the gen-
eral case, at the curves intersection points, the Mahalanobis
metric(v −m)′θ−1(v −m) of both estimates is identical.

Functional Deficiencies
Based on deficient variables, we now form the functional
deficiencies.

Definition 2 (Functional deficiency). A functional defi-
ciencyF for a model-based systemA over a set of hybrid
statesS =

(

P(A),D(A)
)

is a set of variable instances of
M ∪ X that are realized in some states ofP(A), and that
aredeficientin some states ofD(A).

We denote asS(F ) thereconfiguration setassociated toF ,
and that is such that:

∀ (sp
N (v) = vj) ∈ F , L

(

s
p
N (v), sq

F (v)
)

deficient,

then(sp
N , s

q
F ) ∈ S(F ) (4)

F is said to becompletew.r.t. a reconfiguration setS′ iff
S′ = S(F ). The completeF overS is unique. From now on
we consider a functional deficiency to be complete when not
explicitly mentioned otherwise. Also, we sometimes write a
functional deficiency as the conjunction of its elements. The
tuple

(

F, S(F )
)

is denoted areconfiguration tuple. Finally,
it is possible to prioritize a functional deficiency4:

pr(F ) =

n
∑

i=1

f
∑

j=1

p(si
N )p(sj

F ), (si
N , s

j
F ) ∈ S(F ) (5)

Definition 3 (Core functional deficiency). The core func-
tional deficiencyF c has its elements satisfied inall states of
P(A) anddeficientin all states ofD(A). The core function
is unique for a given setS, and its priority is equal to1.5

Note that at least all misbehaving variables in states ofS(F )
do belong to the core deficiency, as doesQ = 0 in our ex-
ample.

Minimal functionalities over maximal
reconfiguration sets
This section develops a characterization of functional de-
ficiencies whose size is minimal, while deficient over the
largest number of state estimates. The reason is that the
autonomous system certainly wants to operate minimal

4Note that in this expression, there is no notion of fault critical-
ity. Every faulty state is assumed to have equal criticalitybut the
probability of the state is taken into account.

5Given thatP(A) andD(A) have their states probabilities sum-
ming to1.



changes while covering the maximum states. We begin by
characterizing a complete functional deficiency of minimal
size.

Definition 4 (Minimal functional deficiency). A functional
deficiencyF is minimal if it exists no functional deficiency
F ′ such thatF ′ ⊂ F andS(F ′) ⊂ S(F ).

We then characterize the maximal reconfiguration set.

Definition 5 (Maximal reconfiguration set). A functional
deficiencyF has a maximal reconfiguration setS(F ) if it
exists no other functional deficiencyF ′ such thatS(F ) ⊂
S(F ′) andF ′ ⊆ F .

The search forminimalfunctional deficiencies overmaximal
reconfiguration sets leads to a set of functional deficiencies
We denote as beingminimax.

Proposition 1. Given two minimax functional deficiencies
F andF ′ such thatF ′ ∩ F 6= ∅, thenS(F ′) = S(F ).

Proof. If F ′′ = F ′ ∩ F andF ′′ 6= ∅, thenF ′′ ⊆ F and
from definition 4, applied toF , it comesS(F ) ⊂ S(F ′′).
And from definition 5,S(F ′′) ⊂ S(F ). It follows S(F ′′) =
S(F ). Similarly,S(F ′′) = S(F ′), soS(F ) = S(F ′).

According to relation 4, the completeness of two func-
tionalitiesF and F ′ implies that if S(F ) = S(F ′), then
F = F ′. The previous proposition implicitly focuses the
search ondistinct minimax functions. Thus functional defi-
ciencies may be characterize as disjoints sets of variablesin-
stances. This result brings flexibility to the reconfiguration
process, but is mitigated as the disjoints functions are not
independent from each other w.r.t. the equations inE/the
transitions inT . In other words, they may not be recovered
independently. In reference to the recovery (planning) oper-
ation, these functionalities are no serializable goals.

Proposition 2. The core functional deficiencyF c is mini-
max.

Proof. This is trivial from definitions 4 and 5.F c is also
complete withS(F c) = S.

Functional Deficiencies Computation
To work on reconfiguration tuples, we define the intersection
and the union of two tuples

(

F1, S(F1)
)

and
(

F2, S(F2)
)

:
`

F1, S(F1)
´

∩
`

F2, S(F2)
´

=
`

F1 ∩ F2, S(F1) ∪ S(F2)
´

(6)

and :
`

F1, S(F1)
´

∪
`

F2, S(F2)
´

=
`

F1 ∪ F2, S(F1) ∩ S(F2)
´

(7)

We noteF1 ∩ F2, F1 ∩ F2 for short.
The computation of the minimax functional deficiencies is

performed with algorithm 1. Its main principle is to progres-
sively reduce simple non-minimax deficiencies. The first
step updates the deficiencies for each combination of two
states ofS using the measure of relation 2, and computes
the core function. Iterating through this set, step3 prunes
out any deficiency of its intersection withF c. Step4 prunes
out non-disjoints functionalities of their intersection.Step5
merges the reconfiguration sets of similar deficiencies.

1: Compute thecompleteF w.r.t. each reconfiguration set
(sp

N , s
q
F ), computeF c, and add them all to the agenda.

2: Iterate through the tuples(Fi, Fj) in the agenda.
3: If F c ∩ Fi 6= ∅, Fi ←− Fi \ {Fi ∩ F c}.
4: Else ifFi∩Fj 6= ∅, create a new functionF ′ = Fi∩Fj

and add it to the agenda. DoFi ←− Fi \ F ′.
5: Else if Fi = Fj , S(Fi) = S(Fi) ∪ S(Fj) and remove

the remaining functionFj from the agenda.
6: Fi is minimax when it does not intersect with other

functions anymore. It is removed to the agenda and re-
turned.

Algorithm 1: Computing minimax functional deficiencies

A word on complexity: givenp nominal andq faulty
states, resulting inf minimax deficiencies, the first step
finds pq + 1 complete functions. Studying the loop that
starts at step2, we consider an iteration checks all inter-
sections among theFi currently in the agenda. Notingnj

the number of intersection checks at iterationj, we have
nj = λj

∑nj−1−1
i=1 i, with λj =

nj−1

nj−1−ej
, and ej is the

number of functions eliminated (or added,e being negative).
Notingλ = 1

ξ

∑ξ

j=1 λj , whereξ is the total number of itera-
tions, we writeλ ≈ pq

f
. It appears that ifD(A) is computed

w.r.t. P(A), then in generalf = pq. From that it comes
ξ ≈ ∑ξ

j=1 λj . Finally, the total number of computed inter-

sections is around
∑ξ

j=1 nj , with n0 = pq + 1.
The algorithm is better understood by developing our ex-

ample. Step1 gives:

s
1

N , s
1

F : F1 = (V1.m = open) ∧ Q1 > 0 ∧ Q > 0

s
1

N , s
2

F : F2 = P0 < P
∗

∧ (S.m = open)

∧(V2.m = closed) ∧ Q1 > 0 ∧ Q > 0

s
1

N , s
3

F : F3 = P0 < P
∗

∧ (S.m = open)

∧Q1 > 0 ∧ Q > 0

s
2

N , s
1

F : F4 = P0 ≥ P
∗

∧ (S.m = closed)

∧(V1.m = open) ∧ (V2.m = open)

∧Q1 > 0 ∧ Q2 > 0 ∧ Q > 0

s
2

N , s
2

F : F5 = (V1.m = open) ∧ (V2.m = open)

∧Q1 > 0 ∧ Q2 > 0 ∧ Q > 0

s
2

N , s
3

F : F6 = (S.m = closed) ∧ (V1.m = open)

∧Q1 > 0 ∧ Q2 > 0 ∧ Q > 0

∧(V2.m = open)

s
1

N , s
2

N , s
1

F , s
2

F , s
3

F : F
c = (V1.m = open) ∧ Q1 > 0 ∧ Q > 0

We haveF1 = F c soF1 can be eliminated. Then reducing
other functions withF c:

F2 = P0 < P
∗

∧ (S.m = open) ∧ (V2.m = closed)

F3 = P0 < P
∗

∧ (S.m = open)

F4 = P0 ≥ P
∗

∧ (S.m = closed) ∧ (V2.m = open) ∧ Q2 > 0

F5 = (V2.m = open) ∧ Q2 > 0

F6 = (S.m = closed) ∧ Q2 > 0 ∧ (V2.m = open)

1. F2 ∩ F3 = P0 < P ∗ ∧ (S.m = open), F7 ←− P0 <
P ∗ ∧ (S.m = open), S(F7) = (s1

N ; s2
F , s3

F ), F2 = F2 \



F7 = (V2.m = closed), S(F2) = (s1
N ; s2

F ). F7 is added
to the agenda.

2. F2 ∩ F4 = ∅, F2 ∩ F5 = ∅, F2 ∩ F6 = ∅, andF2 =
V2.m = closed is minimax.

3. F3∩F4 = ∅, F3∩F5 = ∅, F3∩F6 = ∅, F3 = F7, remove
F7, S(F3) = (s1

N ; s2
F , s3

F ). F3 = P0 < P ∗ ∧ (S.m =
open) is minimax.

4. F4 ∩ F5 = F5, F4 ←− F4 \ F5 = P0 ≥ P ∗ ∧ (S.m =
closed), S(F4) = (s2

N ; s1
F ).

5. F4 ∩ F6 = (S.m = closed), F8 = (S.m = closed),
S(F8) = (s2

N ; s1
F , s3

F ), F4 ←− F4 \ F8 = P0 ≥ P ∗,
S(F4) = (s2

N ; s1
F ), andF4 is minimax.

6. F6 ∩ F5 = F5, F6 ←− F6 \ F5 = F8. RemoveF8,
F6 = (S.m = closed), S(F6) = (s2

N ; s1
F , s3

F ). F5, F6

are minimax.

Finally, the minimax functions are:

F
c = (V1.m = open) ∧ Q1 > 0 ∧ Q > 0 , S(F c) = (s1

N , s
2

N ; s
1

F , s
2

F , s
3

F )

F2 = (V2.m = closed) , S(F2) = (s1

N ; s
2

F )

F3 = P0 < P
∗

∧ (S.m = open) , S(F3) = (s
1

N ; s
2

F , s
3

F )

F4 = P0 ≥ P
∗ , S(F4) = (s

2

N ; s
1

F )

F5 = (V2.m = open) ∧ Q2 > 0 , S(F5) = (s
2

N ; s
2

F )

F6 = (S.m = closed) , S(F6) = (s2

N ; s
1

F , s
3

F )

At this point, a possible extension to the functional defi-
ciencies is to distinguish thecontinuous reductionof Fi,
that is its reduction to variables inX , from thehybrid de-
ficiency (made of both discrete and continuous instances).
Intuitively, as the modes are relaxed, there exist more states
that satisfy the continuous reduction to a deficiency, than the
hybrid deficiency. For this reason, we say the latter leads to
resetsolutions (as modes deficiencies are explicitly set up to
be recovered), as opposed toredundancysolutions (modes
are unspecified, various components may be activated to re-
cover the continuous deficiencies). We noteF̄ the continu-
ous reduction toF .

Reconfiguration of Functional Deficiencies
This section focuses on reconfiguring a functional deficiency
by identifying a set of goal states, and planning a recovery
to those states. Ideally, a goal state specifies a value to all
component modes, and may be inferred from the functional
deficiency. In the case of a hybrid uncertain state however,
the constraints in the form of continuous static/differential
equations prevent a unique identification of the modes at a
single point in time. Instead we propose to rely on an intrin-
sic property of hybrid systems, that is that the conditional
statementsφ naturally partition their behavioral space into
small regions that we refer to asconfigurations. We refer
the reader to (Benazera and Travé-Massuyès 2003) for one
among the several formalizations of these regions. Identi-
fying the regions that enclose the values ofF ∗ is sufficient
as to form goals that we refer to asconfiguration goals(in-
stead of goal states). They correspond to reduced sets of
both component modes and equalities/inequalities over con-
tinuous variables.

Then, we must ensure that the goals are reachable by both
the continuous and discrete dynamics, respectively equa-
tionsE and transitionsT .

In the following, we denote as thegoal functional defi-
ciencyF ∗ the functional deficiency to be recovered. Its se-
lection is part of the recovery process. A simpleF ∗ is F c as
its priority is maximal, and it covers all state estimates.

Configurations identification

We first enhance the model representation, then determines
the goal configurations through a process similar to the con-
sistency approach to model-based diagnosis. Indeed, recon-
figuration can be viewed as the problem of identifying com-
ponents whose reconfiguration is sufficient to restore accept-
able behavior, when diagnosis is the problem of identifying
components whose abnormality is sufficient to explain ob-
served malfunctions (Crow and Rushby 1991).

Causal-graph of influences A first difficulty lies in equa-
tions inE that may demand a time-analysis for determining
continuous variable values that are not set inF ∗. A sec-
ond problem lies in the non-existence of a bijection between
modes inM and a particular continuous region of the state-
space, as constrained byE. These problems can be tackled
by first enhancing the model-based formalism with a causal
representation ofE.

Definition 6 (Causal-Graph of Influences). The causal-
graph of influences of a set of equationsE is an oriented
graphG = (X, I) where the variables inX form a set of
nodesxi, andI a set of arcs among these variables.

The causal-graph is a representation of relations among
variables inE that holds at any time step. Its structure allows
reasoning at a single point in time.

Definition 7 (Causal Influence). A causal influence inI,
Ii,j = (xi, xj , b, φ), is a directed arc between two variables
xi andxj , withb thesignof the influence andφ its activation
condition.

Influences are drawn from the implicit causality inE.
Variables that are subject to no influence are referred to as
the inputsof G. Figure 2 pictures the causal-graph of the
pressure regulator system. In the following we replace equa-
tions inE with G.

In general some work is required to extract the causal-
ity from static relations (Travé-Massuyès and Pons 1997).
b = {−1, 1} (1 includes equality) stores the numericalpos-
itive/negativeinfluence among variables.φ’s truth value in
the hybrid state determines theactivation/deactivationof the
influence in the graph. Unconditioned, the influence is per-
manently activated. The activation conditions represent the
causality changes in the dynamics.

Definition 8 (Configuration). A configuration forA is of
the form

∧

i φi.

A configuration delimits a region of behavior ofA. In our
example,V1.m = open∧ V2.m = open∧P0 ≥ P ∗ ∧P0 ≥
P1 ∧ P0 ≥ P2 ∧ S.m = closed is a nominal configuration
of the system.
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Figure 2: Pressure regulator causal-graph

Building goal configurations from reconfigurable func-
tions We write the MBD theory based on consistency (Re-
iter 1987) where for the reconfiguration purpose, observa-
tions are replaced with functional deficiencies. A deficiency
Fi has been characterized (min/max) w.r.t. the states uncer-
tainty. We’re now searching for theminimal sets of condi-
tionsthat are sufficient to restoreFi.

Definition 9 (Reconfiguration candidate). A reconfigura-
tion candidate forA givenF ∗ is defined as a minimal set
∆ ⊆ I of influences such that

A ∪ F ∗ ∪ {¬φi ∈ ∆} (8)

is consistent.

Definition 10 (Reconfiguration conflict). A reconfigura-
tion conflict forA givenF ∗ is a setλ = {I1, · · · , Ik} of
influences such that

A ∪ F ∗ ∪ φ1 ∪ · · · ∪ φk (9)

is not consistent.

From G ∪ F ∗, we seek for reconfiguration conflicts in
G that are such that influences in a conflict cannot be acti-
vated together givenF ∗. For a deficient variable (node)xj

of F ∗, we callascendinginfluences the influences that be-
long to the paths from the inputs/other deficient variables,to
xj . An ascending influence forxj is notedλj

i = {Ii, φi}. A
conflict for xj is thus the setλj of its ascending influences
{λj

i}i=1,··· ,nj
. Λ =

{

{λj}j=1,··· ,nF∗

}

is the collection of
conflicts over all deficient variables ofF ∗. The minimal set
of influences∆ that are candidates to the reconfiguration is
obtained similarly to the diagnose in the MBD theory by
computing the hitting sets (HS) overΛ (Reiter 1987). We
note∆q = (Iq,∧Ii∈Iφi) a diagnostic candidate, whereIq

is a set of influences. Consequently,∆ =
{

{∆q}q=1,··· ,nq

}

.
We note¬∆ =

{

{¬∆q}q=1,··· ,nq
bigr}.

Consider our example again. ReconfiguringF c with algo-
rithm 2, it impliesφ1 is satisfied (step1), and applying from
SF (F ∗), that¬φ2 is satisfied (step2). Activating influences

1: Apply F ∗ to G.
2: Apply SF (F ∗) to G \ F ∗.
3: Get the conflictsΛ.
4: Compute∆ = HS(Λ).
5: ¬∆ ∧ F ∗ are goal configurations.

Algorithm 2: Identifying reconfiguration candidates
(Goals)

in the graph, it comes two sets of conflicts:
{

λQ = {Q← Q1, Q← Q2, Q2
¬φ2← 0, P2 ← Patm}

λQ1
= {Q1

φ1← P0, Q1
φ1← P1, P1 ← Patm}

φ1 is satisfied inF c, and influences overQ, P1 andP2 are
activated in all configurations, so it simplifies to:

{

λQ = {Q2
¬φ2← 0}

λQ1
= {} , Λ = {λQ, λQ1

}

It comes∆ =
{

{¬φ2}
}

andφ2 ∧ F c thus is a valid goal
configuration (step5).

Reconfiguring the continuous reduction̄F c leads to more
opportunities:φ1 is no more satisfied andλQ1

= {¬φ1},
thus∆ = {{¬φ1, ¬φ2}} and goal configurations are given
by φ1 ∧ φ2 ∧ F̄ c.

Recovery
The recovery operation aims at bringing the system into the
regions defined by the goal configurations. In our case, due
to the hybrid dynamics, this process implies a chain of tran-
sitions exist to the component goal modes, while the contin-
uous dynamics ensure the transition guards are successively
satisfied. Sets of component transitionsT0, · · · , Tp must sat-
isfy

A ∪ D(A) ∪ T0 ∪ · · · ∪ Tp ∪ F ∗ ∪ ¬∆ (10)

is consistent, where we the current time of the system is
set to 0 and the initial states belong toD(A). Pl =
{T0, · · · , Tp} is aplan for the recovery. Notingkp the time
transitionTp triggers, the continuous dynamics must satisfy























X(0) ∪ φ0

E(X(0)) ∪ φ1

E(X(k1)) ∪ φ2

...
E(X(kp−1)) ∪ φp ∪ F ∗

(11)

are consistent, whereE(X(kj)) refers to the dynamics
of relation (1), is conditioned byφj+1, and X(0) =
∑

si
F
∈D(A) p(si

F )X i
F (0). We say relations (10) and (11) de-

fine ahybrid system planningproblem. To our knowledge,
the planning of hybrid systems has received no attention yet.
We believe that its development will be made necessary by
several on-line applications.

Relation (10) poses a probabilistic conformant planning
problem (Hyafil and Bacchus 2003), where a set of transi-
tions must bring the system to a set of predetermined goals,
under uncertainty and without observing the system state.



The plan maximizes the probability of the goal configura-
tion given the initial belief stateD(A). In our example, a
stuck valve can’t be re-opened, so no plan exists for func-
tionalitiesF c andF̄ c. A plan exists toF5 for some initial
states,Pl = {τ3, τ1}. F6 has a planPl = {τ3}.

Relation (11) poses a control problem where the continu-
ous dynamics must be forced to successiveφj through avail-
able inputs. A model predictive control problem (MPC)
solves on-line a finite horizon open-loop optimal control
problem subject to system dynamics and constraints involv-
ing states and controls. Based on measurements obtained at
time k, the future dynamic behavior of the system is pre-
dicted over a fixed horizon, and the controller determines
the input such that a performance criteria is optimized. This
technique fits well within the model-based autonomous sys-
tem framework, given two key elements are already present,
the modelA, and the state predictor (or estimator)P(A).
By using control and measurement horizons of a single time
step, a basic formulation of the MPC problem at timek is

U∗(k + 1) = min
U

J(X(k), U(k))

J(X(k), U(k)) =

∫ k+1

k

F (X(t), U(t))dt

F (X, U) = (X −Xs)
T Q(X −Xs)

+(U − Us)
T R(U − Us)

X(k + 1) = f(X(k), U∗(k))

0 ≤ h(X(k), U(k))

whereQ andR denote positive definite symmetric weight-
ing matrices, andU∗(k + 1) is the optimal input used in the
prediction atk + 1. Consideringφ over X is in the form
φ: l(X) ≥ 0, we noteφ̄: l̄(X) + ǫ = 0 its reduction to
an equality, whereǫ is a term that will ensure the thresh-
old is later satisfied. The function is evaluated atk with
φ̄(k): l̄(X(k)) + ǫ, and we note its inversēφ−1(k). The
MPC application to the control objectiveφj sets the setting
point (Xs, Us) to (φ̄−1

j (k), 0). In our example,τ3’s guard
givesφ̄−1

τ3
(k) = P ∗ + ǫ′.

Again, we’re confronted to the fact thatP(A)(k) =
{s1, · · · , sq} likely contains multiple state estimates. Thus
the minimization must apply to eachF (X i(k), U(k)), re-
turningU∗,i(k + 1). We merge the optimized input candi-
dates according to the states estimated probabilities:

U∗(k + 1) =
∑

i=1,··· ,q

p(X i(k))U∗,i(k + 1) (12)

Finally, whenφj is reached, transitionTp should trigger, and
MPC then focuses onφj+1. The last MPC set-point isF ∗.

This control problem however requires more research.
First, the MPC community itself seeks for better state es-
timation integration within the loop (Morari and Lee 1997).
Second,φ’s inverse is problematic in practice. The control
could focus on bringing the system state back to the geomet-
rical center of the goal configuration region instead. This is
yet to be explored. Third, optimality and especially, sta-
bility problems, if far out of the scope of this paper, must
be tackled in the case of control based on multiple state

estimates. Modern hybrid state estimators should be cou-
pled with powerful techniques such as Quasi-Infinite Hori-
zon NMPC (Chen and Allgwer 1998). Note that recent
developments also pave the way for powerful stability and
safety/reachability analysis of these controllers (Bemporad
et al. 2001).

Reaching the goals: safety and convergence
Considering the context of a faulty system, the reconfigu-
ration process should likely be safe, not making the situa-
tion worse. In our case, the goal configurations identification
may produce multiple solutions, while not ensuring that any
of them are reachable in the end. In this section we improve
algorithm 2 by reducing the number of goal solutions while
ensuring they are reachable under monotonous continuous
dynamics. To ensure the latter, and given a variablev ∈ F ∗,
the sign of(SN (v) − SF (v)) is studied, where(SN , SF ) is
the reconfiguration set ofF ∗. Algorithm 2 is modified such
thatΛ becomesΛ−, the set of influences to be deactivated,
while Λ+, the set of influences to be activatedis constructed
as follows:

• Given a path of ascending influences{Ii,i1 , · · · , Iin,j}
from xi to xj ∈ F ∗, if xi

(

SN (xj) −
SF (xj)

)
∏

k=i1,··· ,in
bk > 0, then for all φk that is

not satisfied, addIik,ik+1
to Λ+.

• Otherwise, ifφk is satisfied, addIik,ik+1
to Λ−.

This corresponds to activating any ascendant path whose
combined influences have a beneficial effect on the restora-
tion of F ∗. The approach is conservative as the test equality
to 0 is not considered.

1: Apply F ∗ to G.
2: Apply SF (F ∗) to G \ F ∗.
3: Get the conflictsΛ+, Λ−.
4: Compute∆+ = HS(Λ+) and∆− = HS(Λ−).
5: Do ∆ = ∆+

⊗¬∆− and eliminate inconsistent con-
figurations.

6: ∆ ∧ F ∗ are goal configurations.

Algorithm 3: Identifying reconfiguration candidates
(SafeGoals)

Back to our example, we reconfigurēF5 = Q2 > 0. Step

3 of algorithm 3 givesλ+
Q2

= {Q2
φ2← P0}, λ−

Q2
= {Q2

¬φ2←
0}, thus∆+ = {{φ2}}, ∆− = {{¬φ2}}. The solution is
the same as returned by algorithm 2 but it is now ensured
that openingV2 brings the flow back into the right direction.

The safety may not be ensured when negative and positive
effects to a variable are activated via the same condition, as
overQ2 in our example. IfPatm was not considered being
a constant, a numerical analysis would have been required
here.

Reconfiguring the Functional Deficiencies
Our general strategy to the reconfiguration of the functional
deficiencies exploresresetsolutions first, thenredundancy
solutions (continuous reductions) in prioritized order. A



plan failure selects the next deficiency. Algorithm 4 sums
up the process.

1: Compute functional deficiencies with algorithm 1
2: Identify goal configurations with algorithm 2 or 3.
3: Find a plan, in case of failure move to the next function-

ality, in prioritized order.
4: Apply MPC usingP(A) as the predictor.

Algorithm 4: Reconfiguration of functional deficiencies

In our example,s2
F ands3

F have much lower probability
thans1

F as they correspond to double faults.F c is subject to
plan failure.F6: S.m = closed is its own goal configuration
and has a planτ3 which guard isP0 ≥ P ∗. MPC generates
the pressure inputP0 to reach that level. Note that depend-
ing on the real initial state, the reconfiguration may have no
effect. The operation does not harm the system though (we
consider maintaining a nominal level of pressure does not
harm the system even when in a faulty state), and may help
discriminate among the estimates. For example, if reconfig-
uringF6 fails, s1

F , and potentiallys2
F are eliminated.

Summary, Existing works and Perspectives
We’ve presented a methodology to the automated reconfigu-
ration of functional deficiencies. The deficiencies are identi-
fied by comparing predicted and diagnosed states, and then
partitioned and prioritized over the state estimates. Goals are
further identified from the deficiencies. Planning and MPC
techniques are used in common to move the system toward
the goals.

To our knowledge, automated MBR has not received a
large attention. A pioneer work, (Crow and Rushby 1991),
explores the analogy between the problems of diagnosis and
reconfiguration. However, the approach does not deal with
state uncertainty and provides no integration within a model-
based loop. Goal identification and safe planning to the ob-
jectives have been studied in (Williams and Nayak 1997) in
the case of qualitative models. We’re not aware of any work
on the planning of hybrid systems.

We hope making some improvements to the current ap-
proach in a near future. TheSafeGoal algorithm could be
enhanced to tackle more complex dynamics. We also would
like to participate to the integration of modern hybrid state
estimator/diagnoser with non-linear MPC techniques. A pri-
ority is to explore the planning of hybrid systems and to
search for stability and reachability results. Finally, we’re
considering a better integration of the functional deficien-
cies selection within the plan generation to reduce the loop
over plan failures by using contingency branches (Meuleau
and Smith 2003) instead of a mere probabilistic conformant
planning.
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