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Abstract

Model-based diagnosis is now advanced to the point au-
tonomous systems nowadays face certain uncertain ang fault
situations with success. The next step toward even more au-
tonomy is to have the system recovering itself after fautts o
cur, a process known asodel-based reconfiguratiorAfter
faults occurred, given a prediction of the nominal behavior
of the system and the result of the diagnosis operation, this
paper proposes to automatically determineftimetional de-
ficienciesof the system. These deficiencies are characterized
in the case of uncertain state estimates. A methodology is
then presented to determine the reconfiguration goals based
on the deficiencies. Finally, a recovery process interieave
planning and model predictive control to restore the deficie
cies in prioritized order.

systems tracks several potential non-faulty/faulty state
timates simultaneously (Nayak and Kurien 2000; Benaz-
era and Travé-Massuyes 2003). Moreover, the set of state
estimates is the result of a selection process as the total
number of possible states is too large to be explored. The
ambiguity is however mitigated by the fact that the num-
ber of state estimates is typically small.

Faults effects may differ from one estimate to the other.
For this reason, pre-compiled policies may fail recovering
the system by proposing an improper command when the
state is uncertain.

Nowadays, embedded digitally controlled systems have
complex behaviors characterized by a preeminence of dis-

crete switches in their dynamics. They are modeled as
. hybrid systems, that exhibit both discrete and continuous
Introduction dynamics.
Model-based autonomous systems already face faulty situ-
ations with some success: they detect and diagnose faults
by either identifying potential candidates to their own ghy
ical state (Hofbaur and Williams 2002) or reasoning on their
structural and behavioral knowledge (Hamsatterl. 1992).

The next step toward even more autonomy is to have the sys-
tem recovering itself after faults occur, a process known as
model-based reconfiguratibiMBR). Automated reconfig-
uration comprehends three steps: goal identification, goal
selection, recovery.Goal identificationsearches for a set

of potential states of the system where the fault effects are
inhibited; goal selectioris the process of deciding the best
of these states, denoted goal statesoverysearches for
the chain of actions that may turn the physical system state
into the desired goal states. Recent architecture design fo
autonomy (Muscettolat al. 1998) puts the goal identifi-
cation and selection processes outside the scope of a model
based diagnoser, in the hands of upper decisional leveés. Th
aim of this paper is to produce an automated goal identifica-
tion/selection/recovery methodology that takes betteand
tage of the system model. Due to several factors, MBR is a
challenging problem:

e The state of the system cannot be uniquely determined in
all situations. Recent model-based monitoring/diagnosis

The main idea that is developed in this paper is that when
you lose your marbles, your first try is to recover them. Re-
ferring to thefaulty statesas the estimates that result from
the diagnosis operation, as opposed to the nominaty
dicted stateswe propose to compare the faulty states and
the predicted states and thus determineftirectional de-
ficienciescaused by the faults. In this context, functional
deficiencies are variable instances in one or more predicted
states and that have belst in one or more faulty states.
Our approach seeks to minimize the size of a functionality
to recover while maximizing its coverage of the estimates.
The contributions of this paper are threefold. First, wensho
how this strategy leads to a finite set of disjoint functional
deficiencies, and characterize them. Second, we propose a
methodology to identify potential goals from the deficien-
cies based on a productive analogy with model-based diag-
nosis, reasoning at a single point in time, despite the sys-
tem continuous dynamics. Third, we show how to inter-
leave conformant planning and model predictive control to
bring the system’s hybrid dynamics from the initial potahti
faulty states to the potential goals states.

Hybrid Model-Based State Prediction and

_— Diagnosis
Copyright(©) 2003, Emmanuel Benazera. ) ) ) ) o
For now, most embedded controllers include pre-compiled re  In this section we introduce a comprehensive formalization

covery policies as part of a rule-based system. of model, state and uncertainty. The autonomous system is



considered a model-based system, i.e. that has a structura
and behavioral knowledge of itself.

Definition 1 (Model-Based System).A model-based sys-
temA is atuple(C, M, T, X, E), whereC is a set of mod-
eled componentsgy! a set of finite discrete variables as com-
ponent behavioral modes, a set of transitions among these
modesX the set of continuous variables afba set of con-
tinuous static/differential equations ovat.

In this paper we use a hybrid description of the physical sys-
tem’s state. Thaybrid states is the tuplg A/, X). Instances

of variablesy € M U X are notedv = v7), orv? for short.
The hybrid state’s discrete side abstracts the physicasys
as a set of mode instancés = A, Cr.m* whereCy,.m'*

is an instance of a variable € M of componenty, € C.

The continuous stat& is made of instances’ of continu-
ous variables oft’. Observed instances are nofédandY
denotes the measured values. Commands are datatle
consider a discrete-time model of the form:

X(k+1) = f(X(k),U(k)
E:{ Y(k) = g(X(k),U(k) 1)
0 < h(X(k),U(k)

System A’s behavior is described with rules of the form
N, e if ¢, wheree;, € E and¢ is a conjunction of equali-
ties/inequalities over functions of variablesihu X . A set

T ={m, - ,m,, } oftransitions is specified for each mode
m. Each transition- is enabled according to a guatdand
may trigger with probability)(7) whenever the guard is sat-
isfied. T'(s;, s;) denotes the set of transitions that moves
froms; to s;.

Given the ability A has to predict and diagnose its own
behavior, we respectively no(A) the prediction of the
hybrid system’s nominal states, arfe(A) the diagnosis
result after faults occur. Note that when fault modes are
present, the diagnosis may become an identification prob-
lem, andP(A4), D(A) may result from the same engine.
Uncertainty on the physical system’s state imposes to con-
siderP(A) andD(A) as sets of hybrid states. We denote
S = (P(A4),D(4)).

Example (Pressure regulator). Figure 1 pictures our case
study: a two valves system that regulates water pressure be-
tween flow entry), and flow output). An electric switcht
powers valvéd’, when pressuré’,; equals or exceeds thresh-
old P*. V, opens when poweredS, V; and V; have two
nominal operational modegpenandclosed and two faulty
modesstuck closed stuckopen @, and @) are measured.

P, is the single input to the system.

Our scenario supposes faults occur when the prediction
of the nominal state is uncertdjni.e. the uncertainty on
the pressure does not allow to discriminate between two
predicted statés

2This corresponds to the general case of tracking multipkest
simultaneously.

3Flows > 0 are abstracted from their real values for an im-
proved readability.
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Figure 1: Pressure regulator

Qo >0
Py < P*

Vi.m = open

Qo >0
Py > P*
Vi.m = open

S.m = open S.m = closed

1 2

SN Vao.m = closed andsy : Va.m = open
Q1 >0 Q1 >0
Q2=0 Q2 >0
Q>0 Q>0

After observinglo > 0AQ = 0, A returns diagnose, based
on the knowledge of the nominal states above:

Qo >0
Py < P*

V1i.m = stuck_closed

Qo >0
Py > P*
V1.m = stuck_closed

S.m = open S.m = closed

s}; : s?; :

Vao.m = closed V2.m = stuck_closed
Q1=0 Q=0
Q2=0 Q2=0
Q=0 Q=0

Qo >0
Py > P*
V1i.m = stuck_closed
ands:} : S.m = stuck_-open
Vo.m = closed
Q1 =0
Q2=0
Q=0

st. is the faulty state diagnosed fros}, while s2. ands%,
have been deduced frorf,. Hybrid states inP(A) =
(sk,s%) andD(A) = (sk, s%,s3.) contain enough infor-
mation for the autonomous system to extracfitsctional

deficiencies



Functional Deficiencies (otherwise, the notations are inversed):

Given a belief on a model-based systemwve extendP (A) vl

and D(A) by the states probabilities such thR(A) = L(sn(v),sp(v)) Z/ S (v)dv+

((sX,p(sh))s -+, (8%, p(s%))) is the set of thex nomi- e

nally predicted states, and their associated probabkilitied v Foo

D(A) = (s, p(sk)), - » (sh, p(s]))) the set off faulty / fr(v)dv+ / In()dv(3)
states from diagnosis, and their attached probabilitiégers L ] ]

a variablev, we notes(v) its value in states. Any set of v', v* are solutions off v (v) = fr(v), that is a second de-
nominal and faulty states if is denoted aeconfiguration gree polynomial forfy, fr Gaussian densities. In the gen-

set We want to find a seF of prioritized variable instances ~ €ral case, at the curves intersection points, the Mahaianob
in M/ U X that are the functional deficiencies between states Metric(v —m)'0~" (v — m) of both estimates is identical.

in P(A) andD(A), and thus need to be recovered. The gen- : L

eral idea that is developed in this section has been inspired Functional Deficiencies

by the model-based reconfiguration of logical functions in Based on deficient variables, we now form the functional

(Stumptner and Wotawa 1999). deficiencies.
Definition 2 (Functional deficiency). A functional defi-
Deficient variable instances ciency F' for a model-based systerh over a set of hybrid
statesS = (P(A),D(A)) is a set of variable instances of
Given two states(sy, sr) respectively fromP(A) and M U X that are realized in some states BfA), and that
D(A), and a variable, we noteL (sy (v), s¢(v)) the mea- are deficientin some states dP(A).
sure of the common ground afs value in each state.  \we denote a$/(F) thereconfiguration seassociated td",
We say that the value af in sy is deficientin sp when and that is such that:
L(sn(v),sp(v)) is smaller than the mean measure of the
estimates ovemisbehavingobserved variables that corre- V (sR(v) =v7) € F, L(s} (v), sk (v)) deficient,
spond to the same stateg andsp, i.e.: then(s%,, s2) € S(F) (4)
DY L(sn(y),sr(y)) F is said to becompletew.r.t. a reconfiguration sef’ iff
L(sn(v),sr(v)) < 2o (Vmran) (2) S’ = S(F). The complete” oversS is unique. From now on

we consider a functional deficiency to be complete when not

wherenbr(Yyniss) is the number of misbehaving observed explicitly mentioned otherwise. Also, we sometimes write a

variables. A misbehaving is an observed variable that led ~functional deficiency as the conjunction of its elementse Th
to the fault detection. Its value iy better fity than its value j[u-ple (F’ .S(F)) |s.de.n.oted aeco.nflguratl(-)rT tupleFinally,
in sv. When relation 2 is satisfied, we s&ysx (v), s7(v)) itis possible to prioritize a functional deficierfcy
is deficient. The definition of depends on the nature of the n f
variables and the expression of the uncertainty in the model _ i j i
. . . o pr(F) = p(sn)p(se), (sy,sw) € S(F)  (5)

In the case variables domains are discrete, as in (Williams Z Z N NoE
and Nayak 1996), variable instances have attached boolean ) .
labels. ~ Misbehaving variables are observables lab¢led —Definition 3 (Core functional deficiency). The core func-
in sy and0 in sp. We set upL(sn(v),srp(v)) = 1 — tional deficiencyF ¢ has its elements satisfiedaf states of
(lab(sn(v)) — lab(sp(v)), wherelab returns the label of P(A) and deficientin all states ofD(A). The core f“”gt'on
a given instance. This case also applies to the measure of'S unique for a given sef, and its priority is equal td.
mode deficiencies. Note that at least all misbehaving variables in states(af)

In case variables instances are numerical intervals, as in do belong to the core deficiency, as dégs= 0 in our ex-
(Benazera and Travé-Massuyes 2003), a misbehaving ob-ample.
served variable is such thatsy(y) N g = 0. We use . . o .
L(sn(), sp()) = s (v) N 5p(0). Minimal functionalities over maximal

In case a variable estimate is represented with a Gaussianrec_:onﬁgl{ratlon sets o )
law, as in (Hutter and Dearden 2003), we gag misbehav- This section develops a characterization of functional de-
ing if p(§ | s7)p(T(sn,5r)) > p(§ | sn), i.e. if its like- ficiencies whose size is minimal, while deficient over the
linood is higher in the diagnosed estimate than in the nomi- 1rgest number of state estimates. The reason is that the
nally predicted one, given the probability of changing mode ~a@utonomous system certainly wants to operate minimal

i=1 j=1

errep(T(sN, sr)) = p(sn (@, 60)) [Licy o p(72)- *Note that in this expression, there is no notion of faulticait
Given thatsy ~ N(my,0y) andsp ~ N(mp,0r), we ity. Every faulty state is assumed to have equal criticality the
defineL as the measure of the common space enclosed by probability of the state is taken into account.

both density functiong, fr. Givenv', v* the two inter- >Given thatP(A) andD(A) have their states probabilities sum-

section points of these curves, and consideringthat 0y ming to1.



changes while covering the maximum states. We begin by
characterizing a complete functional deficiency of minimal
size.

Definition 4 (Minimal functional deficiency). A functional
deficiencyF' is minimal if it exists no functional deficiency
F'such thatF” C FrandS(F’) C S(F).

We then characterize the maximal reconfiguration set.

Definition 5 (Maximal reconfiguration set). A functional
deficiencyF' has a maximal reconfiguration sé{(F') if it
exists no other functional deficien¢y such thatS(F) C
S(F")andF’' C F.

The search fominimalfunctional deficiencies ovenaximal
reconfiguration sets leads to a set of functional deficiencie
We denote as beinginimax

Proposition 1. Given two minimax functional deficiencies
F andF’ such thatF’ N F # 0, thenS(F’) = S(F).

Proof. If F = F' N F andF” # (), thenF” C F and
from definition 4, applied td, it comesS(F) C S(F").
And from definition 5,5(F") c S(F). Itfollows S(F") =
S(F). Similarly, S(F") = S(F'),s0S(F) = S(F’). O

According to relation 4, the completeness of two func-
tionalities £ and F’ implies that if S(F) = S(F”), then
F = F’. The previous proposition implicitly focuses the
search ordistinct minimax functionsThus functional defi-
ciencies may be characterize as disjoints sets of variables
stances. This result brings flexibility to the reconfiguoati
process, but is mitigated as the disjoints functions are not
independent from each other w.r.t. the equation&ithe
transitions in7". In other words, they may not be recovered
independently. In reference to the recovery (planning)y-ope
ation, these functionalities are no serializable goals.

Proposition 2. The core functional deficiendy¢ is mini-
max.

Proof. This is trivial from definitions 4 and 5.F¢ is also
complete withS(F¢) = S. O

Functional Deficiencies Computation

To work on reconfiguration tuples we define the intersection
and the union of two tuple§Fy, S(F1)) and (Fs, S(F3)):
(1717 S(Fl)) N

(F2, S(F2)) = (Fy N F3, S(F) U S(F2)) (6)

and :

(F1,5(F)) U (F2, S(F)) = (FL U Fy, S(F1) N S(FL)) (7)

We noteF; N Fs, Fi N F5 for short.

The computation of the minimax functional deficiencies is
performed with algorithm 1. Its main principle is to progres
sively reduce simple non-minimax deficiencies. The first
step updates the deficiencies for each combination of two
states ofS using the measure of relation 2, and computes
the core function. lIterating through this set, sgeprunes
out any deficiency of its intersection wiffic. Step4 prunes
out non-disjoints functionalities of their intersectiddtep5
merges the reconfiguration sets of similar deficiencies.

1: Compute theompletel” w.r.t. each reconfiguration set
(s, s%), computeF'©, and add them all to the agend

2: Iterate through the tuplgd;, F;) in the agenda.

4: Elseif F; N F; # (), create a new functiof”
and add it to the agenda. OQ — F; \ F'.

5: Else if F; = F;, S(F;) = S(F;) U S(F;) and remove
the remaining functior; from the agenda.

6: I} is minimax when it does not intersect with other
functions anymore. It is removed to the agenda and re-
turned.

o

= F,NF;

1. sNFs =P < P*A

Algorithm 1: Computing minimax functional deficiencies

A word on complexity: givenp nominal andq faulty
states, resulting inf minimax deficiencies, the first step
finds pg + 1 complete functions. Studying the loop that
starts at stef2, we consider an iteration checks all inter-
sections among thé; currently in the agenda. Noting,
the number of intersection checks at iteratipnwe have

n; = AN with A =, ande; is the
number of functlons eliminated (or addezd)emg negative).
NotingA = ¢ Z 1 Aj, whereg is the total number of itera-
tions, we write\ ~ ”q . Itappears that iD(A) is computed
w.r.t. P(A), then in generay = pq. From that it comes
&S 2521 Aj. Finally, the total number of computed inter-
sections is aroungjfz1 n;, Withng = pg + 1.

The algorithm is better understood by developing our ex-
ample. Stel gives:

1 1

SNy SE Fy = (Vim=open) ANQ1 >0AQ >0
SNy S F>, = Py < P* A (S.m = open)
A(Va.m = closed) NQ1 >0AQ >0
SNy S F3 = Py < P* A (S.m = open)
AQ1>0AQ >0
s?\, s}; Fy = Py > P* A (S.m = closed)
A(Vi.m = open) A (Va.m = open)
AQL >0ANQ2>0AQ >0
Sas 5 Fs = (Vi.m = open) A (Va.m = open)
AQL >0ANQ2>0AQ >0
s?\,, s“} = (S.m = closed) A\ (Vi.m = open)
AQ1 >0ANQ2>0AQ >0
A(Va.m = open)
sN,sN,s;,siﬂ,s“} =(Viim=open) AQ1 >0AQ >0
We haveF; = F° soF; can be eliminated. Then reducing
other functions with#':
F», = Py <P"A(S.m =open) A (Vo.m = closed)
F5 Py < P* A (S.m = open)
Fy Py > P* A (S.m = closed) A (Vo.m = open) A Q2 > 0
Fs (Va.m = open) A Q2 >0
Fs = (S.m =closed) A Q2 > 0A (Va.m = open)

(Sm = open) Fr— Py <

P* A (S.m = open), S(F7) = (sk; 8%, %), Fo = Fy \



F; = (Voum = dlosed), S(F
to the agenda.

2. /N EFy =0, FoNF5 = 0, FyNFg = 0, andFy =
Va.m = closed is minimax.

3. I3sNEy =0, F5NFs =0, F3NFs =0, F3 =

) = (sk;s%). Fyis added

Fr, remove

Fr, S(F3) = (sk;8%,8%). F5s = Py < P* A (Sm =
open) IS minimax.
4. F4ﬂF5:F5,F4<—F4\F5 :P() ZP*/\(ST)’L:

closed), S(Fy) = (8% 5%).

5. F4N Fg = (S.m = closed), F, (S.m = closed),
S(Fg) = (S?V,S};,SF) F4 — F4\F8 = PO > P*
S(Fy) = (s%;sk), andFy is minimax.

6. FsNFys = F5, Iy «—— Fy \ Fs = Fg. RemOVGFg,
Fs = (S-m = closed), S(Fs) = (s%; 8k, s%). Fs5, Fg
are minimax.

Finally, the minimax functions are:

F° = (Vi.m=open) A Q1 > 0AQ > 0,S(F) = (sh, 553 55 55, 55)
= (Va.m = closed) , S(F2) = (s}\,; si‘)
= Py < P* A (S.m = open) , S(F3)

1 2 3
Fs3 = (sN38F> SF)

Fy=Py > P" S(Fy) = (sh;sp)
Fs = (Vo.m = open) A Q2 > 0, S(Fs) = (s3; 5%)
= (S.m = closed) , S(Fg) = (s%; 55, 5%)

At this point, a possible extension to the functional defi-
ciencies is to distinguish theontinuous reductiorof F;,
that is its reduction to variables i¥, from thehybrid de-

ficiency (made of both discrete and continuous instances).

Intuitively, as the modes are relaxed, there exist morestat
that satisfy the continuous reduction to a deficiency, than t
hybrid deficiency. For this reason, we say the latter leads to
resetsolutions (as modes deficiencies are explicitly set up to
be recovered), as opposedr&ﬂundanc;solutions (modes
are unspecified, various components may be activated to re-
cover the continuous deficiencies). We nétehe continu-
ous reduction td.

Reconfiguration of Functional Deficiencies

This section focuses on reconfiguring a functional defigienc
by identifying a set of goal states, and planning a recovery

Then, we must ensure that the goals are reachable by both
the continuous and discrete dynamics, respectively equa-
tions £’ and transitiong’.

In the following, we denote as thgoal functional defi-
ciencyF™* the functional deficiency to be recovered. Its se-
lection is part of the recovery process. A simpléis F© as
its priority is maximal, and it covers all state estimates.

Configurations identification

We first enhance the model representation, then determines
the goal configurations through a process similar to the con-
sistency approach to model-based diagnosis. Indeed,recon
figuration can be viewed as the problem of identifying com-
ponents whose reconfiguration is sufficient to restore @ecep
able behavior, when diagnosis is the problem of identifying
components whose abnormality is sufficient to explain ob-
served malfunctions (Crow and Rushby 1991).

Causal-graph of influences A first difficulty lies in equa-
tions in E that may demand a time-analysis for determining
continuous variable values that are not setFih A sec-
ond problem lies in the non-existence of a bijection between
modes inM and a particular continuous region of the state-
space, as constrained B These problems can be tackled
by first enhancing the model-based formalism with a causal
representation of.

Definition 6 (Causal-Graph of Influences). The causal-
graph of influences of a set of equatiofisis an oriented
graphG = (X, I) where the variables i form a set of
nodesr;, and a set of arcs among these variables.

The causal-graph is a representation of relations among
variablesinF that holds at any time step. Its structure allows
reasoning at a single point in time.

Definition 7 (Causal Influence). A causal influence id,

I ; = (z:,25,b, ¢), is a directed arc between two variables
x; andx;, with b thesignof the influence and its activation
condition

Influences are drawn from the implicit causality i
Variables that are subject to no influence are referred to as
theinputsof G. Figure 2 pictures the causal-graph of the
pressure regulator system. In the following we replace equa

to those states. Ideally, a goal state specifies a value to all tions in E with G.

component modes, and may be inferred from the functional
deficiency. In the case of a hybrid uncertain state however,
the constraints in the form of continuous static/differaint

In general some work is required to extract the causal-
ity from static relations (Travé-Massuyes and Pons 1997)
b= {-1,1} (1 includes equality) stores the numeripals-

equations prevent a unique identification of the modes at a itive/negativeinfluence among variableg’s truth value in

single point in time. Instead we propose to rely on an intrin-
sic property of hybrid systems, that is that the conditional
statements) naturally partition their behavioral space into
small regions that we refer to @snfigurations We refer

the reader to (Benazera and Travé-Massuyes 2003) for one

among the several formalizations of these regions. Identi-
fying the regions that enclose the valuesttf is sufficient
as to form goals that we refer to esnfiguration goalgin-

stead of goal states). They correspond to reduced sets ofexample};.m

both component modes and equalities/inequalities over con
tinuous variables.

the hybrid state determines thetivation/deactivatiorof the
influence in the graph. Unconditioned, the influence is per-
manently activated. The activation conditions repredemt t
causality changes in the dynamics.

Definition 8 (Configuration). A configuration forA is of
the formA; ¢;.

A configuration delimits a region of behavior df In our
=open A Vo.m = open AN Py > P* AN Py >
Py NPy > P, ANS.m = closed is a nominal configuration
of the system.



: Apply F* to G.

: Apply Sp(F*) to G\ F*.

: Get the conflicts\.

: ComputeA = HS(A).

5: =A A F* are goal configurations.

A WN P

Algorithm 2:  Identifying reconfiguration candidates
(Goals)

in the graph, it comes two sets of conflicts:

@ Q2 ;
{)\Q{QHQLQ‘*Q%QQLZO!PQHPatm}
{ - )‘Ql:{ngPOangPhPl‘_Patm}
Q

¢, is satisfied inF<, and influences ovap, P, and P, are
activated in all configurations, so it simplifies to:

2
{ Ao jQ{lQ:z 5 0} ,A={Ao Aoy}

Figure 2: Pressure regulator causal-graph

Building goal configurations from reconfigurable func- ] ]
tions We write the MBD theory based on consistency (Re- It comesA = {{-¢,}} and¢, A F* thus is a valid goal
iter 1987) where for the reconfiguration purpose, observa- configuration (step).

tions are replaced with functional deficiencies. A deficienc ~ Reconfiguring the continuous reductidli leads to more
F; has been characterized (min/max) w.r.t. the states uncer- Opportunities:¢, is no more satisfied antly, = {=¢1},
tainty. We're now searching for thainimal sets of condi-  thusA = {{—=¢1, =¢2}} and goal configurations are given
tionsthat are sufficient to restor&. by ¢1 A ¢2 A F©.

Definition 9 (Reconfiguration candidate). A reconfigura- Recovery

tion candidate forA given F'* is defined as a minimal set

A C T of influences such that The recovery operation aims at bringing the system into the

regions defined by the goal configurations. In our case, due

AUF*U{-¢; € A} (8) to the hybrid dynamics, this process implies a chain of tran-
_ ) sitions exist to the component goal modes, while the contin-
IS consistent. uous dynamics ensure the transition guards are succegssivel
Definition 10 (Reconfiguration conflict). A reconfigura- satisfied. Sets of componenttransitids- - - , 7, must sat-
tion conflict for A given F* is a setA = {I;,---, I} of isfy
influences such that AUDA)UT U---UT,UF"U-A (10)

AUF*Ud U~ U 9 is consistent, where we the current time of the system is
P U ok ©) set to 0 and the initial states belong tP(A). Pl =
is not consistent. {Tb,--- ,T,} is aplanfor the recovery. Noting, the time

i _ . transitionT), triggers, the continuous dynamics must satisfy
From G U F*, we seek for reconfiguration conflicts in

G that are such that influences in a conflict cannot be acti- X(0)U oo
vated together givel™. For a deficient variable (node) E(X(0))U ¢
of F*, we callascendingnfluences the influences that be- E(X (k1)) U ¢g (11)

long to the paths from the inputs/other deficient varialites,
z;. An ascending influence far; is noted\! = {I;, ¢;}. A
conflict for z; is thus the seh; of its ascending influences
{MYizt,omy- A= {{N}j=1, mp. | is the collection of are consistent, wheré& (X (k;)) refers to the dynamics
conflicts over all deficient variables éf*. The minimal set of relation (1), is conditioned byp,;+;, and X(0) =
of influencesA that are candidates to the reconfiguration is S eD(A)p(S%)X?(O)- We say relations (10) and (11) de-

: - ; . i
obtained similarly to the diagnose in the MBD theory by  ine"ahybrid system planningroblem. To our knowledge,
computing the hitting setsH(S) over A (Reiter 1987). We  the planning of hybrid systems has received no attentian yet

(X (ky1)) U dy U F*

note A, = (Zy, Arez¢i) a diagnostic candidate, whefg We believe that its development will be made necessary by

is a set of influences. Consequently= {{A}g=1,.. n, }- several on-line applications.

We note=A = {{-Ag}¢=1,... n,bigr}. Relation (10) poses a probabilistic conformant planning
Consider our example again. Reconfigurirfgwith algo- problem (Hyafil and Bacchus 2003), where a set of transi-

rithm 2, it implies¢; is satisfied (step), and applying from tions must bring the system to a set of predetermined goals,

Sr(F™*), that—¢- is satisfied (stefd). Activating influences under uncertainty and without observing the system state.



The plan maximizes the probability of the goal configura-
tion given the initial belief stat®(A). In our example, a
stuck valve can’t be re-opened, so no plan exists for func-
tionalities F'© and F'. A plan exists toF; for some initial
states,Pl = {73, 71 }. Fg has aplanPl = {73}.

Relation (11) poses a control problem where the continu-
ous dynamics must be forced to successiyéhrough avail-
able inputs. A model predictive control problem (MPC)
solves on-line a finite horizon open-loop optimal control
problem subject to system dynamics and constraints involv-

estimates. Modern hybrid state estimators should be cou-
pled with powerful techniques such as Quasi-Infinite Hori-
zon NMPC (Chen and Allgwer 1998). Note that recent
developments also pave the way for powerful stability and
safety/reachability analysis of these controllers (Berado
etal. 2001).

Reaching the goals: safety and convergence

Considering the context of a faulty system, the reconfigu-
ration process should likely be safe, not making the situa-

ing states and controls. Based on measurements obtained ation worse. In our case, the goal configurations identifirati

time &, the future dynamic behavior of the system is pre-
dicted over a fixed horizon, and the controller determines
the input such that a performance criteria is optimizedsThi
technique fits well within the model-based autonomous sys-
tem framework, given two key elements are already present,
the model4, and the state predictor (or estimat@jA).

By using control and measurement horizons of a single time
step, a basic formulation of the MPC problem at tiinis

U*(k+1) min J(X (k), U(k))

k41
/k

J(X(k),U(K)) = F(X(@),U(t))dt

F(X,U) = (X -X)'Q(X - X,)
+(U - Us)"R(U - Uy)
X(k+1) = [f(X(k),U"(K))
0 < h(X(k),U(K))

where@ and R denote positive definite symmetric weight-
ing matrices, an@™* (k + 1) is the optimal input used in the
prediction atk + 1. Consideringp over X is in the form

may produce multiple solutions, while not ensuring that any
of them are reachable in the end. In this section we improve
algorithm 2 by reducing the number of goal solutions while
ensuring they are reachable under monotonous continuous
dynamics. To ensure the latter, and given a variatdeF™,

the sign of(Sy (v) — Sr(v)) is studied, wheréSy, Sp) is

the reconfiguration set df*. Algorithm 2 is modified such
that A becomes\—, the set of influences to be deactivated
while AT, the set of influences to be activais¢onstructed

as follows:

e Given a path of ascending influencés ;,,---,1;, ;}
from x; to Z;j S F*, if CCi(SN(.I'j) —
Sp(5)) [jes, ... s, bk > 0, then for all ¢ that is
not satisfied, add;k_,ml toAT.

o Otherwise, if¢;, is satisfied, add;, ;, , toA™.

This corresponds to activating any ascendant path whose
combined influences have a beneficial effect on the restora-
tion of F'*. The approach is conservative as the test equality
to 0 is not considered.

¢ 1(X) > 0, we note¢: [(X) + ¢ = 0 its reduction to
an equality, where is a term that will ensure the thresh-
old is later satisfied. The function is evaluatedkavith
o(k): I(X(k)) + ¢, and we note its inverse—1 (k). The
MPC application to the control objectivig sets the setting
point (X, Us) to (gEj_l(k),O). In our exampless’s guard
givesg (k) = P* +¢.

. Apply F*to G.

: Apply Sp(F*)to G\ F*.

: Get the conflicts\ ™, A~.

: ComputeA™ = HS(A*)andA~ = HS(A™).

: Do A = AT @ -A~ and eliminate inconsistent co
figurations.

A A F* are goal configurations.

a s wNBE

>
T

6:

Again, we're confronted to the fact th&(A)(k) =
{st,--- 57} likely contains multiple state estimates. Thus
the minimization must apply to eadh(X(k), U(k)), re-
turningU**(k + 1). We merge the optimized input candi-
dates according to the states estimated probabilities:

Ur(k+1)= Y p(X'(k)U""(k+1) (12)

i=1,q

Finally, wheng; is reached, transitiofi, should trigger, and
MPC then focuses of; 1. The last MPC set-point i8™.

This control problem however requires more research.
First, the MPC community itself seeks for better state es-
timation integration within the loop (Morari and Lee 1997).
Secondg’s inverse is problematic in practice. The control
could focus on bringing the system state back to the geomet-
rical center of the goal configuration region instead. THis i
yet to be explored. Third, optimality and especially, sta-
bility problems, if far out of the scope of this paper, must
be tackled in the case of control based on multiple state

Algorithm  3:
(SafeGoals)

Identifying reconfiguration candidates

Back to our example, we reconfigufg = @, > 0. Step
3 of algorithm 3 gives\, = {Q: 2 py, Ao, = {Q2 pi
0}, thusA™T = {{¢2}}, A~ = {{—=¢2}}. The solution is
the same as returned by algorithm 2 but it is now ensured
that opening/’, brings the flow back into the right direction.
The safety may not be ensured when negative and positive
effects to a variable are activated via the same conditi®n, a
over(@, in our example. IfP,;,, was not considered being
a constant, a humerical analysis would have been required
here.

Reconfiguring the Functional Deficiencies

Our general strategy to the reconfiguration of the functiona
deficiencies exploregesetsolutions first, themedundancy

solutions (continuous reductions) in prioritized order. A



plan failure selects the next deficiency. Algorithm 4 sums
up the process.

1: Compute functional deficiencies with algorithm 1

2: ldentify goal configurations with algorithm 2 or 3.

3: Find a plan, in case of failure move to the next function-
ality, in prioritized order.

4: Apply MPC usingP(A) as the predictor.

Algorithm 4: Reconfiguration of functional deficiencies

In our examples% ands?. have much lower probability
thans?. as they correspond to double faulfsS is subject to
plan failure.Fy: S.m = closed is its own goal configuration
and has a plams which guard isPy, > P*. MPC generates
the pressure inpuf;, to reach that level. Note that depend-
ing on the real initial state, the reconfiguration may have no
effect. The operation does not harm the system though (we
consider maintaining a nominal level of pressure does not
harm the system even when in a faulty state), and may help
discriminate among the estimates. For example, if reconfig-
uring Fg fails, sk, and potentiallys? are eliminated.

Summary, Existing works and Perspectives

We've presented a methodology to the automated reconfigu-
ration of functional deficiencies. The deficiencies areiden

fied by comparing predicted and diagnosed states, and then

partitioned and prioritized over the state estimates. Saed
further identified from the deficiencies. Planning and MPC
techniques are used in common to move the system toward
the goals.

To our knowledge, automated MBR has not received a
large attention. A pioneer work, (Crow and Rushby 1991),

explores the analogy between the problems of diagnosis and

reconfiguration. However, the approach does not deal with
state uncertainty and provides no integration within a nhode
based loop. Goal identification and safe planning to the ob-
jectives have been studied in (Williams and Nayak 1997) in
the case of qualitative models. We're not aware of any work
on the planning of hybrid systems.

We hope making some improvements to the current ap-
proach in a near future. Thea feGoal algorithm could be
enhanced to tackle more complex dynamics. We also would
like to participate to the integration of modern hybrid stat
estimator/diagnoser with non-linear MPC techniques. A pri
ority is to explore the planning of hybrid systems and to
search for stability and reachability results. Finally,'nee
considering a better integration of the functional deficien
cies selection within the plan generation to reduce the loop
over plan failures by using contingency branches (Meuleau
and Smith 2003) instead of a mere probabilistic conformant
planning.
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