
Towards Collaborative Searching over an Overlay Network

Emmanuel Benazera, juban@free.fr

2 January 2006

There is a certain frustration in the searching the web these days. True, simple web interfaces let users
search through a prescanned massive portion of the whole webshere and return results in microseconds.
Carefully tailored search engines and their armies of zealot crawlers navigate the webshere, report, cache,
classify and rank URLs and pages. The infrastructure that these systems necessitate has concentrated their
development at a few powerful companies and network providers, the only players able to distribute powerful
servers along the communication backbones in order to continuously serve an up-to-date reflection of the face
of the websphere from their databases. However, if these infrastructures have changed and modified the use
of the web in general, there is room for improvement in the way search results are presented, used and shared
among users. Here we can pinpoint a few drawbacks and missing capabilities. First, adhoc multi-criteria
ranking strategies have become so complicated that they leave the user with no intuition of why and how the
list of results to his query has been concocted. Second, there is no possible direct feedback from the user
to the search engine (for obvious reasons of treachery, etc...) so broken links and uninformative webpages
regularly make it on the top of the results list of searches until crawlers remove them, or criteria have been
fixed. Third, the search process through which the user manually narrows down on the collection of links
of interests to him (through successive searches and elimination) is lost in the current range of web search
services (but for the companies themselves, of course, that can match the users’ IP addresses, query dates and
keywords).

Notwithstanding the need for automated search engines and simple interfaces to their results, we argue
that first, the concentration and power in the hands of the search giants through the devising of the ranking
criteria and the massive amount of users information they can make use of is unhealthy for the future of the
web, and does not beneficiate to the users (through the deshumanization of search results); second, there is
for each user of a search engine a missing social mass that is the whole number of people that are conduct-
ing similar searches, within a certain time range, while not reporting on them (directly since they can’t, or
statically, e.g. through a dedicated webpage or blog).

A natural answer to these limitations1comes from the study of a now well established trend and technology
for sharing on the Internet that is the spread of peer-to-peer (P2P) applications that let users search through

1There are other implicit limitations to the current search engines:

• So-called crawlers have to start from certain webpages, e.g. newly posted URLs. A certain part of the information can remain
hidden for a time before it accesses the conscious (i.e. searchable) part of the websphere.

• Ranking must be extremely discriminatory (who does dig in beyond the first couple of result pages ?).

• There is no real-time search (it all comes from the archives).

• Updates are recurrent and may not be adapted to the different rhythms of changes of the different informational fields of the web.

• It is not easy to mix up the results of different search engines.

1

distributed databases for files and information fragments and exchange them through direct connections (i.e.
not being routed through a dedicated server). We propose to build such an overlay network (i.e. a computer
network built on top of the physical network) to relay and share ratings on the local results of users’ searches
through existing search engines as well as the web queries themselves. We argue that this would make part of
the missing social mass appear thus opening new perspectives for the searching of the webshere. Users would
be able to share and rate not only links, but whole search objectives and strategies. Thus the local websearcher
would participate in real-time group searches digging in the massive and growing amount of information. In
response to the three drawbacks given above, ratings could complement the current multi-criteria indexes,
feedback would be made possible and shared among users, and each user’s progression towards his closest
interests would act as search suggestions to other users of related group searches.

The document is organized as follows: first we lay down a simple theory for both the collaborative
filtering of URLs and the collaborative searching; second we study and adapt the best existing solutions to
the building of an efficient overlay network; third, we give recommendation for a future implementation.

1 Decentralized Collaborative Filtering and Searching

Basically, the collaborative elimination of incorrect or unsuitable information and the fostering of useful
sources or items is known as collaborative filtering. Collaborative filtering techniques are at the heart of all
web-stores strategies for predicting personalized online consumer interests thus providing them with sugges-
tions of suited articles. If we except those based on rules, there are two main types of ratings: user-based
and item-based. User-based ratings use other users experience to predict a rating for a given user. Item-based
ratings use past ratings from a user to predict his rating of non yet rated items. Clearly, the item-based rating
is a local measure of prediction. Since our application builds on the cumulative experience of users searching
through related parts of the websphere, we naturally choose a user-based rating here2.

1.1 k Nearest Neighbors, Prediction and Recommendation

In a typical scenario for collaborative filtering (CF) is that of m users U = {u1, · · · , um} and a list of n items
L = {l1, l2, . . . , lm′}. Each user ui has a list of items Lui

, which the user has expressed his/her opinions
about. There exists an active user ua for whom a CF algorithm must predict a rating (or likeness) for an item
lj . There are two complementary forms for expressing this prediction:

• Prediction is a rating Pa,j whose computation is based on the existing ratings drawned from a certain
group of users. The prediction uses a similarity measure ω among users to weight their respective
ratings of the item lj .

• Recommendation is a list of k items being recommended to the user a.

Both forms rely on the finding of k users of interest that would constitute the group from which the prediction
or recommendation is computed. This problem is refered to as k Nearest Neighbors (KNN) problem. In our
case however the rating problem is twofold:

• Users perform local searches with existing search engines whose results are to be rated (i.e. predicted)
according to the experience of other fellow searchers3.

2There would be several more options to be studied, such as log-based ratings[8].
3The use of bots is possible. Here users and bots are interchangeable.

2

• Users progress within their searches by performing new but related searches. These searches are shared
and rated according to other users’ ratings.

Therefore, the user-based rating strategy must be adapted to two different types of information: URLs and
searches (i.e. sets of keywords). We refer to the first as collaborative filtering (formally, a task of prediction),
and to the second as collaborative searching (formally, a task of recommendation). However, it must be
noted that there is an obvious correlation between a search and the rating of the URLs that are its results.
This means that for different searches whose results’ intersection is non null, it is to be expected to observe a
high variance on the ratings for the same URLs.

1.2 Similarity Measures

So before moving forward to the basic solving of the KNN and its adaptation to our application, two similarity
measures are needed: one among the user ratings; the other among the searches. Both measures rely on a
metric associated to the respective spaces: the space of all possible user ratings; the space of all possible
searches. In both cases we list a few useful similarity measures.

1.2.1 Similarity measure among user rankings

We refer to the rating of a user i over an item (a URL) j as ri,j . The Pearson’s correlation coefficient is a
measure of the linear correlation between two populations. It is expressed as the ratio of the covariances with
the standard deviations. In our case it can be expressed as follows:

ω(a, i) =

∑

j∈Lua∩Lui

(ra,j − r̄a)(ri,j − r̄i)
√

∑

j∈Lua∩Lui

(ra,j − r̄a)2
∑

j∈Lua∩Lui

(ri,j − r̄i)2

where r̄i is the mean over all of user’s i ratings. Note that if users have no rated items in common, the
correlation is null.

Similarity can also be measured in term of ’distance’ from one user to the other. This necessitates defining
a distance D over the space of user’s rankings. Here we can either use an Euclidian distance or a normalized
Euclidian distance -(Mahalanobis). Then we can express ω as:

ω(a, i) =
exp−D(a, i)

∑

i exp−D(a, i)

Note that a given group of users is required for computing the normalizing factor.

1.2.2 Similarity measure among searches

Similar measures can be used among searches. For computing the Pearson’s correlation coefficient, either a
rating is computed for each search based on the rating of its result URLs, either users can rate a whole search.
However, distance-based rating seems more promising in this case because using the Hamming distance
among keywords (number of different bits or characters) allows to not rely on another set of ratings. The
implicit assumption here being that similar sets of keywords would lead to similar results from the search
engines4 and thus similar user ratings. For two searches s and s′ in the space of all possible searches S, we
φ(s, s′) the measure of the similarity between s and s′.

4Of course this is often not true, e.g. the case of mistyping a popular keyword.

3

1.3 Distributed Collaborative Filtering

Considering our application, it is natural to consider that the k users of interest are the users that belong to a
same search group (SG). While the building of SGs is formally described later on, in the following we will
refer to users that belong to a given SG sg as the ui ∈ sg. This must clearly been understood as a heuristic for
the solving of the KNN problem in our domain of application. Also we note sg(s) the SG that corresponds
to search s. We will see later that it is advantageous not to have a bijection between the space of all searches
and the space of search groups.

1.3.1 Collaborative filtering

For now, noting s the search being performed by an active user ua, and formalizing a simple KNN problem,
we have:

Pa,j = r̄a +
∑

ui∈sg(s)

ω(a, i)(ri,j − r̄i)

This relation says that the prediction for user a on item j relies on the mean deviation on this particular
item of other users (in the same search group) from their mean rating over other items. Obviously, a good
prediction relies on both a decent number of users and a decent number of ratings per user (so the deviation
bears a good significance).
Therefore it makes sense to base the prediction on a stream of recent and past ratings to increase its accuracy.
However, given the fast changing space of certain portions of the websphere (news sites, blogs, wikis, ...) it
is likely to see ratings progress or decay over time. The prediction can include a geometric recessing horizon
factor for lowering the importance of old ratings. Here:

Pa,j = r̄a +
∑

ui∈sg(s)

γdi,jω(a, i)(ri,j − r̄i)

where γ ∈ [0, 1) and di,j a measure of the time since rating ri,j , e.g. in number of days.
Now, as stated before, the ratings of URLs are conditionned upon the search they’ve been obtained from.
This means that a rating r depends on a search s and therefore should be noted r(s). Taking this into account,
we have:

Pa,j = r̄a +
∑

ui∈sg(s)

φ(s, s′)γdi,j ω(a, i)(ri,j(s
′)− r̄i)

where for each ri,j , s’ is the search it has been drawned from.

1.3.2 Distributed computation

There has been at least one work on distributing a CF computation over a P2P network [5]. What distribution
implies is that first, the search group sg(s) (this is the object of the next section); second, the ri,j , r̄i, di,j and
s′ must be retrieved from the peers on the network.

1.4 Distributed Collaborative Searching

Here we express collaborative searching (CS) as the action of predicting a rating on a whole search (i.e.
represented as a set of keywords). We treat it in a similar manner as CF (however, it is possible there are

4

better solutions). We have:

Pa,s′ = s̄a +
∑

ui∈sg(s)

φ(s, s′)ω(a, i)(si,j − s̄i)

where s′ is a search being recommended to user a and s his currently performed search.

s̄i =

∑

s∈Sui

1
|s|

∑

j∈s ri,j

|Sui
|

where Sui
is the set of searches having been performed by user i (this can be reduced to the searches per-

formed within a given search group). Obviously this model is of poor value because new searches, i.e.
searches that have no strong presence in the user records will obtain ratings that have poor accuracy. What
is needed here is a probabilistic model for predicting the relevance of a search given the set of past searches
performed by the user. This would be a whole lot different, so we leave it at this for now. However, we’ll see
in the remaining of the paper that there are ways of making simple recommendations (i.e. answering a KNN
problem over searches) with a properly built network structures.

2 Adapting a DHT-based overlay network

In this section we give reasons for and develop a structured distributed index for the storing of users’ local
search activities. We adapt network nodes data structures for our purpose and extend very recent research on
locality sensitive index generation for use in a distributed structured framework.

Existing search engines map links to queries, i.e. they index documents and links. In our case the
mapping is to users (i.e. computers) for collaboration. So we’re offered two choices, either map the queries
or the URLs[9] to the computers that have used or visited them. Now, under the hypothesis that for each URL,
as indexed by a search engine, there exist at least one query that leads to it5 (i.e. the URL is reachable) then
it is easily seen that the space of all queries is larger than the space of all URLs (since they are queries that
return no results). However, in general a URL does match less queries than a query matches URLs. Follows
a trade-off between the number of available computers and the mean storage available on each computer:
mapping URLs to computers leads to a high distribution of the information with very light load on most
of the computers on the network; mapping queries to computers allows to store more information on less
computers with a higher required storage capability. In consequence, given the fact the storage space is not
the predominant problem these days, and that we can’t expect our application to become a too popular service
quickly, the second option seems to be the right one, and in the following we explain how to efficiently map
queries on computers on the network.

2.1 Why a Distributed Hash Table (DHT) ?

In our application each node of the network corresponds to a computer along with a user querying a search
engine in order to find a set of webpages whose content fits his expectations or needs (answer to a question,
lookup for a portal to precise information, lookup for a local service, gathering information for an exhaustive
coverage of a past or ongoing event, testing the existence of a theory, ...). The idea is that with the geo-
graphical spread of the Internet it is natural to expect several individuals to be digging the websphere with

5Given the current search algorithm available to the public, this is a reasonnable assumption for text-based documents only. Docu-
ments made of pictures or equations only may not be reachable.

5

similar objectives in mind at the same time. As they progress through their search they implicitly discard
uninterested links, read and/or bookmark the interesting ones. As these information related to these activities
can more or less easily be encapsulated and shared with CF as described in the previous section, remains
the geographical sharing of this information among computer nodes. This can naturally be done through a
P2P overlay network. The idea here is that the structure of the network is used to locate and regroup user’s
ongoing searches (e.g. sets of keywords) while their interests on the resulting URLs are shared through direct
connections among the peers. Thus an answer to a user query is a set of users that belong to the same search
group.

Following recent surveys [7], robustness analysis [2] and current trends in the development of filesharing
applications over P2P networks 6, structured routing along with decentralized indexes seems to offer the best
performances, routing a query in an overlay network of N nodes in O(log N) hops (i.e. nodes in the path
between the source of the query and the node with the best answer). The archetype of these system is a
Distributed Hash Table (DHT).

Basically a DHT is a mapping from the space of queries to the space of computers in the network. As
in a standard hash table, the mapping function is a hash function. In the distributed case however, it must
be clearly understood that the type of hash function determines the structure of the overlay network. This is
of primary importance since that in application to searching it is very much welcome that results to similar
queries are grouped together: this stems from the fact that most queries are best answered with a set of results
(usually the k best results). When this applies, the search problem can be identified to a k Nearest Neighbors
problem (KNN).

2.2 Implicit groups vs. keyword searches combinations

Before detailing the basic structure of the overlay network, we study two options in the choice for the repre-
sentation of the space of queries. As mentionned above, the hash function of the DHT represents a mapping
from the space of queries to the space of computers in the network, i.e. each computer is given a key and
becomes a node of the overlay network. We note #N the key for node N . We’ve thought of two simple repre-
sentation of query space: (i) queries are single keywords only; (ii) queries are chains of characters (including
spaces) with an imposed maximum size.

Let’s study the implications of option (i). First, it presents the advantage that looking for keywords we
can expect that the pool of users returned and thus the search groups formed would be relatively large, which
in general is a factor of increase in the prediction’s accuracy (see previous section). Second, it implies that the
load over the network would be very unbalanced: nodes that correspond to popular keywords would easily be
overloaded. Third, complex queries (i.e. made of more than a single keyword...) would have to be assembled
in the network, i.e. users ids fetched from each node are combined through intersections and unions with
nodes content (through direct connections) before the results are sent back to the user. Alternatively, all
results can be returned and the user node would then do the job, while obvioulsy unecessarily clogging the
network. This problem has been studied in the litterature for a simple reason: it is equivalent to distributing
a regular search engine. Thus, observing the rapid expansion of search engines use, several groups of people
started looking into combining information retrieval (IR) with P2P architectures. However, it appears that
solutions fare poorly in general w.r.t. centralized search architectures. Thus [6] shows that an index partition
by documents is more efficient than a partition by keyword even if they choose to improve on the latter. The
rational behind this is in fact that partition by keyword leads to both expensive communications among peers
for intersecting the results (the case of a conjunction of keywords) and that some keyword results flood the

6Even the popular bittorrent protocol is moving towards a DHT based implementation.

6

network with gigabits of data. This can be mitigated but the overall complexity remains within an order of
magnitude to feasibility. Partition by document does not really apply to us as in our case nodes are not storing
and sharing any file fragments7. Therefore option (i) doesn’t look too good for us.

Now, let’s review option (ii). Here queries are chains of characters and users that used them are stored as
such in the DHT. Now, this presents the obvious disadvantage that search groups are made smaller. However,
the load over the network nodes is more well balanced. No more reduction operations are needed to be
performed on the network neither. In fact, this option is the easiest one to start building a basic application
on. Later we look into enlarging the user database to each node by regrouping similar queries.

2.3 Basic overlay structure for CF

Basically, an overlay network over a DHT distributes the storage of data by having a node hosting the data
pieces whose keys are closest to this node’s key (than those of the other nodes). In our case, the network
address of a user that is performing a local query on a search engine is stored on the node whose key matches
his local query the best.

2.3.1 Node data structure

Basic data structure for each of the network node follows. First, each node must store a certain number of his
neighbors’ addresses as this constitutes the mesh of the overlay network. We refer to it as the routing table.
Second, it must store addresses to nodes whose data match their key. We refer to it as the data table. Both
tables have rows of the form (#search id, {ip addr1, ..., ip addrn}).

Additional local data structures (for sharing over direct connections) include a mapping of searches to
links and ratings whose rows are of the form (#search id, {(l1, r1), · · · (ln, rn)}).

2.3.2 Routing

Now, since nodes are getting in & out of the network at all times, more robustness is needed and modern
DHTs in fact store data on the p nodes whose keys are closest as that of the original target node[2]. This
means that a node’s data table does not forcibly reflect the addresses of nodes whose local queries are closest
to this node’s key. But this is of no importance given the DHT routing algorithm. Here a query from a node to
the DHT is a lookup for a search group given the node’s local query. At each node of the network, the query
is routed by sending it to the neighbor with the closest key to the local query. Once no other node than the
current node can be found, the target node grabs the data from his p (or less) neighbors and returns it to the
query root node through a direct connection. The two main functions are put(s) and lookup(#K, m) that
respectively push a local query s into the DHT, and retrieve a search group (based on m nodes) from a DHT
based on a hashed local query #K. A lookup in the DHT corresponds to O(log N) RPCs.
In general in our application both a push and a lookup are performed over the same local query, so the two
functions should be merged.

7Nodes store user ratings on URLs so it would be possible to build an index based on this information, such as in [5]; however, this
only proves to be a heuristic to the solving of the KNN problem. We show later that it is possible to get closer to the optimal solution by
using other methods.

7

1: N = N0, where N0 is the local node.
2: while #N is not the closest to #K do
3: N ← closest node to #K in N ’s routing table.
4: return N ’s m neighbors whose keys are the closest to #N (from N ’s routing table).

Algorithm 1: lookup(#K, m)

1: (make a local query s on a web search engine).
2: hash s into a key #K on the current node N0.
3: lookup(#K, p).
4: for the p nodes do
5: Store (#K, ip(N0)).

Algorithm 2: put(s)

2.4 Enhancing the overlay structure with locality

The basic DHT structure as described above does look up for exact query matches: a lookup returns a certain
number of computer IP addresses whose local user’s machine connects to and asks for exact query lookups
to their respective data tables. However, we can expect close or similar queries8 to return very correlated
results, and therefore be of interest for the same users. Intuitively, a search group should thus be based on
a set of similar queries. So as stated before, this comes back to having an imperfect matching between the
space of queries and the space of computers, i.e. several queries should refer to the same computer. In
the DHT framework, this is a property of the hash function. What we express here as a desirable property
is in fact refered to as the collision rate in the literature on hash tables and functions: for cryptography or
efficient storage for example, it is highly desirable that no two hash values are the same for two different
items. However, in certain applications like KNN, it can be of interest to group items together by having their
hashed values collapsing for items within a certain bounded space. This is what we want to do here.

Now, let’s imagine we have such a hash function that takes a query and returns a real value, and that this
value would be the same for all queries within a certain range (i.e. according to a distance among strings, such
as Hamming or Levenshtein distances). Such a partitioning would forcibly be adhoc because there would be
queries that could have belonged to different search groups and that won’t. So, what this means is that the
hash function must be probabilistic: i.e. the same query should be distributed among the search groups in
relation with its distance to other queries. In other words, the hash function’s collision rate should reflect the
closeness of queries by distributing them accordingly among computers on the network. In application that
would mean that first, each query would have to be pushed several times in the DHT; second, that each query
must be looked up several times. Results are a set of computers (i.e. search groups and users) ranked by
their rate of occurence within the result list that is directly reflecting their respective distance to the looked
up query.

Strangely enough, it seems that only recent work on hash tables and functions has explored such func-
tionalities [4].

8Intuitively there is a difference between close and similar queries: they can be close by the results while not similar in the keywords
used. Here we in fact only refers to similar queries. Closeness is a more difficult problem related to information an ontologies.

8

2.4.1 Locality sensitive hash functions (LSH)

Recent work on LSH can be found in [3]. Formally, a hash function is locality-sensitive if the probability of
the function colliding on two different queries is decreasing with the distance between these queries.

Basically, the LSH is built upon a specific family of probability distributions, the p-stable functions.
The weighted sum of random variables that follow a p-stable distribution D has the same distribution as a
single random variable with distribution D but weighted by the lp norm of the weights. Using l2 enforces a
proportionality with the Euclidian distance.

In practice, the colliding rate is amplified within a certain range R, i.e. that the rate is increased within a
ball of radius R thus amplifying the gap between this region and the rest of the space. This is very useful to
create small pockets of very closed queries while keeping the property of having the same query belonging to
several pockets. This is achieved by concatenating a ’family’ of LSH for generating the key of a single point
(or query). Now, this must be repeated with L families for each point (i.e. query): this comes to sampling
and dispersing the points among different pockets to create local patterns of hashed values. Thus, a lookup
in the LSH is made of L lookups, each returning a set of elements. It is prooved that the solution to the KNN
problem is within the union of these sets.

In our application the benefit of using LSH functions could be huge, as L lookups for a query s would
return the N closest queries on the network along with their associated users. However, this is to be more
precisely studied because the computational load and the memory requirements for LSH are way higher than
for regular hash tables.

2.4.2 Distributed LSH

There is no work on distributed LSHs that I know of. In a distributed LSH (DLSH) the major change com-
pared to a DHT would be in the local data structures of each node. In fact, an additional data table that we
refer to as the locality-sensitive table is made necessary. Each of its rows is of the form (#Key1, #Key2,
{#search1, ..., #searchM}). The later column refers to data within the data table.

3 Appendix

3.1 Lexicon

Lexicon is in table 1.

3.2 Social trends and ideas

It is unlikely that users rate a high percentage of the visited URLs. However, it is easy to put a bot construction
kits in their hand that they could program in a similar way as a spam filter.

Certainly in such an application users would try to foster their own websites and businesses by massively
overating these URLs. One solution to mitigate this behavior is to maintain special ratings or even ’wiki’
boards that would flag the obviously over-ranked information. Other techniques could be used here.

References

[1] An architecture for peer-to-peer information retrieval. Technical report, EPFL, 2004.

9

rating vote of a user on a search result (URL) or a search proposition.
prediction prediction of the vote of a user on a URL or a search, based on those of other users,

and used as the likelihood of the usefulness of that URL or search for that user.
collaborators the set of users a given user is directly connected to, and exchange URLs

and searches with (local view).
search group the whole set of users that are searching on a given (set of) queries (or topic) together.
local query the query a user is performing on his machine through a standard search engine.
query a query on the DHT network.
routing table node’s table of p closest (in the key space) neighbors’ ip addresses.
data table node’s table of ip addresses to the nodes (related by their local queries).

Table 1: Lexicon

[2] J. Cates. Robust and efficient data management for a distributed hash table, June 2003 2003.

[3] M. Datar, P. Indyk, N. Immorlica, and V. Mirrokni. Locality-sensitive hashing scheme based on p-stable
distributions. In In Proceedings of the Symposium on Computational Geometry, 2004.

[4] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In In Proceedings
of the 25th VLDB Conference, Edinburgh, Scotland, 1999.

[5] P. Han, F. Yang, and R. Shen. A novel distributed collaborative filtering algorithm and its implementa-
tion on p2p overlay network. In Advances in Knowledge Discovery and Data Mining, 8th Pacific-Asia
Conference, PAKDD 2004, Sydney, Australia, 2004.

[6] J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and R. Morris. the feasibility of peer-to-peer web
indexing and search. In In 2nd International Workshop on Peer-to-Peer Systems (Berkeley, California,
2003)., 2003.

[7] J. Risson and T. Moors. Survey of research towards robust peer-to-peer networks: Search methods.
Technical Report UNSW-EE-P2P-1-1, University of New South Wales, Sydney, Australia, September
2004.

[8] J. Wang, A. P. de Vries, and M. J.T. Reinders. A user-item relevance model for log-based collaborative
filtering. In European Conference on Information Retrieval (ECIR 2006), 2006.

[9] Kun-Lung Wu and Philip S. Yu. Latency-sensitive hashing for collaborative web caching. Computer
Networks, 33(1-6):633–644, June 2000.

10

