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�bstract—Hybrid systems serve as a powerful modeling par-4

adigm for representing complex continuous controlled systems5

that exhibit discrete switches in their dynamics. The system and6

the models of the system are nondeterministic due to operation7

in uncertain environment. Bayesian belief update approaches to8

stochastic hybrid system state estimation face a blow up in the9

number of state estimates. Therefore� most popular techniques10

try to maintain an approximation of the true belief state by11
either sampling or maintaining a limited number of trajectories.12

These limitations can be avoided by using bounded intervals to13

represent the state uncertainty. This alternative leads to splitting14

the continuous state space into a finite set of possibly overlapping15

geometrical regions that together with the systemmodes form con-16

figurations of the hybrid system. As a consequence� the true system17

state can be captured by a finite number of hybrid configurations.18

A set of dedicated algorithms that can efficiently compute these19

configurations is detailed. Results are presented on two systems of20

the hybrid system literature.21

Index Terms—Configurations� estimation� hybrid systems�22

numerically bounded uncertainty.23

I. INTRODUCTION24

THIS paper is concerned with the state estimation of plants25

that are modeled as hybrid systems with uncertainty. It is26

targeted at the monitoring and diagnosis of these plants. Most27

of the modern controlled systems exhibit continuous dynamics28

with abrupt switches. These systems can be modeled with29

a mixture of discrete and continuous variables. The discrete30

dynamics evolve according to the switches that are represented31

by transitions among a set of discrete modes. The behavioral32

continuous dynamics are modeled within each mode, often33

by a set of discrete-time equations. In general, the full hy-34

brid state remains only partially observable. Depending on the35

level of abstraction of the model, or because of physical or36

design impediments, some switches cannot directly be observed37

neither. The estimation of the hybrid state is the operation38

that reconstructs the whole hybrid state based on a stream of39

measurements and the knowledge of the hybrid model. This40

is also known as hybrid state filtering, and the module that41

performs this operation is called a filter. Most plants operate42
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in uncertain environments and are not accurately known due 43
to the presence of sensor and process uncertainties. As a con- 44
sequence, transitions among modes may be nondeterministic, 45
and continuous behavioral models may embed a representa- 46
tion of instrumentation and process uncertainties. It follows 47
that modern filtering algorithms must cope with uncertainty. 48
Probabilities and bounded sets are two main representations of 49
uncertainty. 50

State estimation of hybrid systems has received increased 51
attention in the last decade or so. However, while the systems 52
are hybrid in nature, a first set of methods and algorithms for 53
hybrid state estimation has remained close to continuous state 54
estimation techniques [1]–[3]. Another cluster of approaches 55
has mixed a heterogeneous set of techniques for continuous 56
state estimation with qualitative reasoning [4]–[8]. Another 57
set is formed with particle filtering methods whose focus is 58
on the sampling of discrete transitions [9]–[11]. This group 59
of filters has emerged as the set of most popular techniques. 60
Basically, they apply a Bayesian belief update to stochastic 61
hybrid systems [10]–[14]. The filter computes a posterior prob- 62
ability distribution function (pdf) on the continuous part of 63
the state for each mode. Measurement likelihood w.r.t. the 64
pdfs is used with transition probabilities to rank the possible 65
hybrid state estimates. These methods all suffer from several 66
weaknesses. 67

The main drawback is an inevitable blowup of the number of 68
state estimates, which are also called hypotheses. It stems from 69

the fact that the statistics that are maintained on hypotheses 70
with the same discrete states cannot be merged without loss. 71
The blowup is particularly intractable when the hybrid system 72

represents faults by discrete switches that may occur at any 73
time. Several works have explored methods for mitigating the 74
blowup: through better use of available information by looking 75
ahead [15] or by enumerating the first few best estimates [16]; 76
by merging estimates [17], [18]; and hierarchical filtering [19], 77
risk sensitive sampling [20], learning [21], forward heuristic 78
search [14], or mixed sampling and search [22]. However, the 79
blowup remains inevitable, and some states with low probabili- 80
ties must be dropped. Unfortunately, this can lead to the loss of 81
the true state [23]. 82

A second problem lies in the infinite tails of the representa- 83
tional pdfs. In practice, the Gaussian distribution is widely used 84
for representing the belief states due to its good statistical prop- 85
erties. The distribution tails are the cause of several problems 86
by notably preventing unambiguous fault detection [24] and 87
elimination of hypotheses. Working with truncated Gaussian 88
pdfs [25] has been studied as an alternative, but is unattractive 89
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due to the loss of the statistical properties, e.g., Bayes’ rule does90

not yield a truncated Gaussian.191

Additionally, the stochastic modeling of faults is weak, since92

for a good part, the modeled faults have never been observed,93

and, thus, a priori numerical knowledge such as probability of94

occurrence is indicative at best. The reliability of the produced95

results can, therefore, be questioned. Nevertheless, the literature96

has produced a plethora of algorithms that run a recurrent and97

rigorous Bayesian belief update on these values and that require98

the computation of difficult integrands [26].99

Finally, current modeling formalisms do not accept con-100

straints that mix discrete and continuous variables. In general,101

constraints over discrete variables apply to operational modes,102

and a set of linear or nonlinear equations link continuous vari-103

ables in each mode. However, in case of software systems or ab-104

stracted continuous behavior systems, qualitative descriptions105

are better suited [27], [28]. There is a need for constraints that106

formally capture dependencies between variables of different107

types. The absence of such constraints prevents a natural con-108

nection between variables of different types and, consequently,109

decouples variables that are strongly coupled in nature.110

Adding up the facts, it appears that pdfs are simply badly111

suited to the state estimation of uncertain hybrid systems with112

fault models. Such considerations are not new even for con-113

tinuous systems [29]. Tackling the ambiguity that plagues the114

stochastic filters recommends a bounded representation of un-115

certainty as adopted in set-theoretic approaches. Set-theoretic116

state estimation of linear and nonlinear systems [30]–[33]117

has been studied before, but not the case of hybrid systems.118

This paper fills this gap by developing a hybrid scheme that119

supports bounded uncertainty with interval models. A special120

look is given at the articulation of discrete and continuous121

dynamics in that case. Doing so aims at circumventing most of122

the drawbacks that have been mentioned. Bounded uncertainty123

yields several advantages compared to pdfs. First, it provides124

guaranteed results, i.e., an enclosure of the whole set of real125

solutions. For this reason, the use of bounded uncertainty has126

been popular in applications to fault detection and diagnosis,127

since it avoids false-positive detections [34]. Second, and most128

importantly, it prevents exponential blowup in the number of129

state estimates. The reason behind this key property is that130

estimates with identical discrete states can be merged with no131

loss of information, i.e., preserving completeness; although this132

comes at a price. The recursive computation of convex bounded133

trajectories suffers from the well-known wrapping effect that134

results from the convex enclosure at each prediction step. This135

is because the convex bounds provide an outer approximation136

of complex geometrical shapes, and their computation is thus137

plagued with a recursively growing error. This problem calls for138

aggressive optimization techniques to mitigate the error growth.139

Another well-known problem related to intervals is multiple140

incident parameters. Specific strategies like optimization over a141

time-sliding window may then be required [35]. Summarizing,142

1Interestingly, whenever some data or signal is discarded from a Gaussian
distribution for falling below a threshold, the resulting data do obey a truncated
Gaussian. Applying Bayes rule and approximating the resulting belief state with
a new Gaussian increases the error recursively.

the computational burden of a stochastic filter comes from the 143
need of tracking a very high number of belief states, whereas 144
that of set-theoretic hybrid state estimation lies in the compu- 145
tation of tight bounds. However, as this paper shows, switched 146
systems sometimes offer a cheap way of tightening the bounds 147
as a side effect of their chopped dynamics. 148

The alternative idea proposed in this paper leads to splitting 149
the continuous state space into a finite set of possibly overlap- 150
ping geometrical regions that, together with the system modes, 151
form configurations of the hybrid system. As a consequence, 152
the true system state can be captured by a finite number 153
of hybrid configurations. This paper contrasts with the pure 154
prediction performed in reachability analysis of hybrid systems 155
[36]. First, because our estimator reconstructs the hybrid state 156
for arbitrary continuous dynamics and switching conditions. 157
Second, because it incrementally operates in sampled time: 158
discrete switches that occur between two sampled time steps 159
are reconstructed by our estimator. 160

Overall, this paper proposes a hybrid estimation method 161
that aims at computing an outer approximation of the hybrid 162
state. In Section II, this paper formalizes a hybrid modeling 163
scheme that naturally embeds both bounded uncertainty and 164
mixed discrete/continuous constraints over the hybrid state. 165
Based on these two ingredients, it is shown that there exists 166
a special form of mixed constraints that fully capture a system 167

hybrid configuration under uncertainty. Here, a configuration 168

is a mixed continuous/discrete constraint that characterizes the 169
possible hybrid states of the system at a given point in time. 170
Configurations are detailed in Section III. The hybrid state 171
estimation process is developed in Section IV. It is a matured 172
version of the work initiated in [37]. The experimental results 173
are given in Section V. 174

II. HYBRID SYSTEM WITH UNKNOWN BUT 175

BOUNDED UNCERTAINTY 176

We represent a physical plant as a nondeterministic and 177
uncertain hybrid discrete-time model. This representation has 178
several key features that significantly differ from the existing 179
formalisms. First, all continuously valued variables are as- 180
sumed to be uncertain but numerically bounded. Second, the 181
formalism uses two timescales in parallel for the discrete and 182
continuous dynamics, respectively. This permits an unknown 183
but finite number of instantaneous switches in the discrete 184
dynamics to occur in-between two steps of the continuous 185
dynamics. Third, the representation does not make any par- 186
ticular assumption on the conditions triggering the switches, 187
particularly w.r.t. the continuous state of the system. Finally, 188
the model supports both qualitative and quantitative behavioral 189
representations. For this reason, our formalism is richer than 190
more traditional ones such as [38] and suitable for modeling 191
a wide range of physical components and plants. To help 192
the reader throughout this paper, Table I sums up the main 193
notations. 194

Definition 1 �Hybrid System): A hybrid system H is repre- 195
sented by a tuple 196

H = �X�E�Q� T � L�Θ) (1)
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TABLE I
MAIN NOTATIONS

where X = {Xd� Xc} is the set of discrete and continuous197

variables, respectively, E is the set of difference equations, Q198

is the set of propositional formulas, T is the set of transitions,199

L is the set of continuous mapping functions associated to200

transitions, and Θ’s are the initial variable values.201

A. Variables and States202

A hybrid system H abstracts the behavior of a physical203

system through a set of functional modes. The system mode is204

xm, which has domain {m1� . . . �mnm
}. The full discrete state205

is noted as π = �xm�xd), where xd = [xd1� . . . � xdnd
]T is the206

vector of other discretely valued variables used to describe qual-207

itatively abstracted continuous behavior within modes. There-208

fore,Xd = {xm� xd1� . . . � xdnd
}. The system mode is assumed209

not to be directly observable. yd denotes the observable subpart210

of xd. The vector of actually observed discrete values is noted211

as ỹd. The discrete input vector is noted as ud.212

The continuous dynamics of the system are captured by the213

continuous state vector xc = [xc1� . . . � xcnc
]T , the observation214

vector yc, and the continuously valued input vector uc. The215

vector of actually observed values is noted as ỹc. Xc is the set216

of all continuous variables. The continuous state is represented217

with uncertainty in a bounded form. Thus, xc is an interval218

vector (a box) in the continuous state space. That is, xc is219

a closed and connected rectangular subset of �nc , or equiva-220

lently, xc ∈ IRnc , where IR is the set of real-valued intervals.221

The hybrid state of the system is noted as s = �π�xc).222

B. Time and Dynamics223

1) Continuous Dynamics: Every mode is associated to a224

unique continuous evolution model. The continuous behavior225

of the physical system is modeled by a finite set of differ-226

ence equations in E with uncertain but bounded parameters.227

In each mode, xm corresponds to a subset of discrete-time228

equations of the following standard form, assuming a sampling 229
period Ts: 230

xc�k = f�xc�k−1�uc�k−1�wc�k−1� xm) (2)

yc�k =h�xc�k�vc�k� xm) (3)

where (2) is the state equation, (3) is the measurement equation, 231
k is the discrete-time index, and wc = [wc1� . . . � wcnw

]T and 232
vc = [vc1� . . . � vcnv

]T represent the process and measurement 233
noise vectors, respectively, and are assumed to be independent. 234
This uncertainty and the parameters defining f and h are 235
assumed to be unknown but numerically bounded. In particular, 236
this means that �wc�∞ ≤ �w and �vc�∞ ≤ �v , where �w and �v 237

are known positive scalars. �.�∞ denotes the∞-norm such that 238
�wc�∞ = maxi |wci|, i = 1� . . . � nw. 239

What we denote the sampled timescale is the timeline that 240
is explicit in (2) and (3). The sampled time step k thus labels 241
the kth sampling period between continuous instants Ts�k − 1) 242
and Tsk. xc�k and yc�k are the valuations of the continuous state 243
and the output at sampled time step k. 244

2) Discrete Dynamics: A need for an abstracted qualitative 245
representation of behavior was discussed in Section I. Behav- 246
iors that are naturally expressed by means of discrete variables, 247
like those of embedded software, also need to be represented. 248
Thus, at a discrete level, these descriptions are written in 249
propositional logic by a set of time-independent propositional 250
formulas Q over discrete variables of Xd. 251

What we denote as the logical timescale marks the sequence 252
of changes in the discrete dynamics of the system. With πl = 253

�xm�l�xd�l), we specify the discrete state at logical time step 254
l. The switches from one mode to another are represented by 255
transitions. Transition τ switches H from mode xm�l to mode 256
xm�l+1. T is the set of nT transitions of H . Transitions are of 257
the following different types. 258

1) Autonomous transitions are triggered by conditions over 259
the continuous state. These conditions are referred to as 260
guards and noted φ : xc → {0� 1}. Section III conducts 261
an in-depth analysis of guards. 262

2) Commanded transitions are triggered by discrete com- 263
mands ud. 264

3) Unpredictable transitions have no guards and can trigger 265
anytime, for instance, fault transitions. 266

A transition is said to be enabled whenever its guard is realized. 267
Nondeterminism arises from the possibility of having multiple 268
transitions enabled simultaneously. When enabled, a transition 269
triggers a mode change. After a transition τ has triggered and 270
switched the system mode from xm�l to xm�l+1, the continuous 271
state xc�k becomes lτ �xc�k), where lτ is denoted as the transi- 272
tion mapping function. 273

Transitions are assumed to be instantaneous. However, when 274
abstracting certain behaviors using a hybrid model, it appears 275
that transitions may have nonnegligible duration. The present 276
framework supports the triggering of a transition after a certain 277
delay has expired. Importantly, the transition triggering remains 278
instantaneous. Thus, the duration of a transition is really to 279
be understood as a delay, that is, a certain number d of sam- 280
pled time steps before an enabled transition does trigger and 281
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Fig. 1. Discrete and continuous parallel timescales. Transitions are instanta-
neous but are represented by arrows from the previous logical time step to the
time step at which they trigger (e.g., τ1 triggers at l). Dates synchronize the
timescales at every sampled time point.

does lead to a different mode. Assuming that transition τ has282

its autonomous guard enabled in xc�k, it triggers d-sampled283

time steps later, and the continuous arrival state is given by284

lτ �xc�k+d). In the rest of this paper, we assume that d = 0 with285

no loss of generality.286

3) Discrete and Continuous Parallel Timescales: As men-287

tioned above, our representation uses two discretized timescales288

in parallel on top of the continuous timescale: the sampled289

and the logical timescales. As a consequence, changes in the290

discrete dynamics are not assumed to take place at a particular291

sampled time step, but can occur in-between two sampled292

time steps. However, hybrid states need to be synchronized in293

time. Because the sampled time evolves according to a fixed294

sampling period Ts, the logical time is synchronized with the295

sampled time, and not the opposite. In consequence, the logical296

time is always associated to the first sampled time step that297

follows a switch (see Fig. 1). Note that for this reason, an298

instantaneous switch is always triggered after its occurrence299

on the physical system. In this context, �l� k) is a date for300

the system, and sl�k denotes the hybrid state at logical time301

step l and sampled time step k. We assume that a finite but302

unknown number of switches can occur between two sampled303

time steps. In this case, hybrid states are indexed by dates whose304

sampled indexes are the same, but with different logical indexes305

(see time step k in Fig. 1). In this formulation, the execution306

(solution trajectory) of the proposed class of hybrid systems is307

a succession of hybrid states at established dates. The execution308

corresponding to the succession of dates in Fig. 1 is written as309

sl−1�k−2� sl−1�k−1
τ1

−→ sl�k
τ2

−→ sl+1�k
τ3

−→ sl+2�k
τ4

−→ sl+3�k+1.310

C. Example311

Example 1 �Thermostat System): The temperature x of a312

room is controlled by a thermostat that keeps it between313

xmin and xmax degrees by switching a heater on and off.314

The system is modeled as a hybrid system H . Xd = {xm}315

with domain {m1 = off� m2 = on� m3 = stuck on� m4 =316

stuck off}. xc is reduced to the temperature x of the room,317

and uc is reduced to the input u. The continuous dynam-318

ics of the system are modeled by the first-order differential319

equation ẋ = D�u− x), where D is a multiplying factor. We 320
model E = {Em1

� Em2
� Em3

� Em4
} with Em1

= Em4
such 321

that u = x̄ (i.e., the temperature outside the room), and Em2
= 322

Em3
such that u = h (i.e., the heater constant whose value 323

is uncertain but bounded). In discretized form, the dynam- 324
ics are given by the following recurrent equation in stan- 325
dard form (2): xk = axk−1 + buk−1, with a = 1−DTs, and 326
b = DTs, assuming a sampling period Ts. Q is empty, and 327

T = {τ1� τ2� τ3� τ4}, where τ1 : m2
φ1=1 if �x≥xmax)
−−−−−−−−−−−→m1, τ

2 : 328

m1
φ2=1 if �x≤xmin)
−−−−−−−−−−−→m2, τ3 : m2

φ3=1 if �x≥xmax)
−−−−−−−−−−−→m3, and 329

τ4 : m1
φ4=1 if �x≤xmin)
−−−−−−−−−−−→m4. Notice that φ

1 = φ3, and φ2 = 330

φ4. L associates the identity function to every transition. 331

III. SET-THEORETIC HYBRID CONFIGURATIONS 332

This section formalizes the concept of configuration of a 333
hybrid system. A canonical form of a transition guard is given. 334
It leads to the definition of a configuration as a rectangular 335
bounded region that enables a possibly empty set of transitions. 336
Another contribution is the logical abstraction of a configu- 337
ration that articulates the discrete and continuous dynamics 338
of the hybrid system. This formulation paves the way for the 339
estimation algorithms in Section IV. 340

A. Transition Guards 341

Commanded transition triggering is conditioned over the 342
discretely valued inputs ud, but these conditions are directly 343
expressed as constraints at the discrete level and do not 344
require specific processing. Autonomous transitions require 345
more attention. 346

Definition 2 �Autonomous Transition Guard): The guard 347
of an autonomous transition τ j is noted as φj : xc = 348

�xc1� . . . � xcn)T → {0� 1}. φj�xc) can be expressed as a set of 349
inequalities in the canonical form given in the if condition of 350
(5). The inequalities referring to a given state variable xci define 351
the partial guard φ

j
i �xc) as 352

φ
j
i �xc) =

�

α

φ
j
iα

�xc) (4)

φ
j
iα

�xc) =

�
1� if xci � g

j
iα

�xc1� . . . � xci−1� xci+1� . . . � xcn)
0� otherwise

(5)

where g
j
iα

: xc → � is referred to as a condition function, and 353
� stands either for “≤” or “≥.” 354

The index iα identifies one specific condition function in 355
the set of condition functions referring to transition τ j and 356
variable xci. Note that no assumption is made on the form of 357
the condition functions.2 For the sake of clarity, in the rest of 358
this paper, we make two simplifying assumptions. First, we 359
assume that the set of condition functions is either empty or 360

2The inequality canonical form does not limit the expressiveness of the
framework. Complex inequalities can always be manipulated to be brought
back to this form, possibly by introducing new variables.
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Fig. 2. Example 2: generic 2-D situation with guards φ1
1 : xc1 ≤ g1

1�xc2) and φ2
2 : xc2 ≥ g2

2�xc1). The positive and negative subdomains are computed from

conditional functions g1
1 and g2

2 taken at xc�k , or at its corners when it is a box. The upper bounds to conditional domains gj

i
�xc�k) are abbreviated as gj

i�k
. A

similar abbreviation is used for lower bounds. They yield�k = [x̃0
c�k

� x̃1
c�k

� x̃2
c�k

]. (a) Functional representation of the guards. (b) Real-valued xc�k . (c) Uncertain

xc�k is a hyperrectangle.

of cardinality 1 for every xci and τ j . In other words, there is at361

most one inequality referring to a variable xci associated to a362

partial guard φ
j
i . Second, we assume that φ

j
i �xc) = 1 whenever363

the set of condition functions is empty (i.e., gj
i is not specified).364

This allows us to write φj�xc) =
�nc

i=1 φ
j
i �xc).365

Unpredictable transitions are modeled with guards such that366

φj = 1, independent of xc. When the model contains guards367

as disjunctions of inequalities, these can be broken into guards368

over several transitions and modes. Admittedly, the modeling369

of a discrete switch as a transition whose guard is made of e370

disjunctions of inequalities necessitates a total of 2e modes.371

τ j is said to be enabled in the hybrid state s = �π�xc)372

whenever φj�xc) = 1. When enabled, the triggering of the373

transition is an instantaneous transfer of the hybrid state to374

another state (possibly identical) at the next logical time step.375

This operation is detailed in Section IV along with the hybrid376

state estimator. The rest of this section studies the structure377

of the continuous space as constrained by the autonomous378

transition guards.379

B. Grid of Configurations380

At sampled time step k, the evaluation of transition guards381

against a continuous vector xc�k is done through the evaluation382

of the condition functions g
j
i �xc�k). Each inequality referring383

to a condition function indeed splits the domain of xc�k in two384

subdomains.385

1) x̃
j
c�k = {�xc1� . . . � xcnc

)T |φj�xc�k) = 1}: The region386

that satisfies the inequalities or positive subdomain. x̃j
c�k387

denotes the region in which transition τ j is enabled at388

sampled time step k.389

2) The region that does not satisfy the inequality or negative390

subdomain, which is noted as ¬x̃
j
c�k = �nc − x̃

j
c�k (com-391

plementary set of x̃j
c�k).392

As xc�k defines a box in�
nc , the values of gj

i �xc�k) are bounded393

intervals of the form [gj
i
�xc�k)� gj

i �xc�k)]. Thus, x̃j
c�k and ¬x̃

j
c�k394

are interval vectors of dimension nc, the scalar bounds of which 395
take value gj

i
�xc�k), gj

i �xc�k), −∞, or +∞. Considering all 396
the autonomous transitions, this formulation leads to splitting 397
the continuous space into several overlapping subregions. The 398
set of positive and negative subdomains for xc�k for all the 399
autonomous transitions is used to build what we refer to as the 400
conditional domain of xc�k. 401

Definition 3 �Conditional Domain): Given a hybrid system 402

H , the conditional domain of xc�k at k is given by �k = 403

[x̃0
c�k� x̃

1
c�k� . . . � x̃

n�

c�k], where we have the following: 404

1) x̃
j
c�k is the positive subdomain for every transition τ j , 405

j = 1� . . . � nT of H; 406

2) x̃
0
c�k =

�n�

j=1�¬x̃
j
c�k) is the region that satisfies no partial 407

guard. 408

Example 1 �Continued): The model has two guards over four 409
transitions. Guards depend on temperature xc = x only. Then, 410
�k = [x̃0

k� x̃
1
k� x̃

2
k� x̃

3
k� x̃

4
k] with x̃0

k =]xmin� xmax[, x̃1
k = x̃3

k = 411

]−∞� xmin], and x̃2
k = x̃4

k = [xmax�+∞[. 412

Example 2: Consider a hybrid system H with xm taking 413
its value in domain {m1�m2�m3}, xc = [xc1� xc2]

T , and T = 414

{τ1� τ2} with τ1 : m1
φ1

−→m2, τ
2 : m1

φ2

−→m3, and φ1 = φ1
1 : 415�

1� if xc1 ≤ g1
1�xc2)

0� otherwise
, φ2 = φ2

2 :

�
1� if xc2 ≥ g2

2�xc1)
0� otherwise

. 416

Initially, H is in mode m1. Fig. 2 shows the conditional 417
domain for this generic 2-D example in two situations: when 418
xc�k is real valued and when xc�k is a box. In both cases, the 419
conditional domain is given by 420

�k =
�
x̃

0
c�k� x̃

1
c�k� x̃

2
c�k

�
=

�
x̃0

c1�k x̃1
c1�k x̃2

c1�k

x̃0
c2�k x̃1

c2�k x̃2
c2�k

�

=

�
]g1

1�k�+∞[ ]−∞� g1
1�k] ]−∞�+∞[

]−∞� g2
2�k

[ ]−∞�+∞[ [g2
2�k

�+∞[

�

where gj
i�k
abbreviates gj

i
�xc�k). Note that when xc�k is real 421

valued, gj
i�k

= g
j
i�k. 422
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�k concretizes the split
3 of the continuous space defined by423

the autonomous transition guards at time step k. Note that �k424

evolves and is reshaped according to the continuous state vector425

at each time step. Geometrically, the bounds of x̃
j
c�k define426

edges that split the continuous state space into overlapping427

volumes shaped by boxes. Later developments require the428

definition of the bounds of these boxes. The lower bound of429

�k is written as �k, and the upper bound is written as �k.430

Every combination of elements of �k corresponds to a sub-431

region of the continuous state space in which some transitions432

are enabled and some are not. These regions are in the form433

of bounded boxes that support the concept of configuration of434

the hybrid system H . A configuration corresponds to a possi-435

ble situation of the hybrid system in terms of simultaneously436

enabled and nonenabled transitions. Due to the boxed shape437

of the regions, the set of all configurations is organized in a438

grid that evolves with time, which is dubbed as the grid of439

configurations.440

Definition 4 �Configuration): A configuration �k of the hy-441

brid systemH at time step k is defined as follows.442

1) A configuration region ��k
that is a box in the continuous443

state space that confines a region that simultaneously444

enables a possibly empty subset of transitions of T .445

2) A configuration function δ�k
that is a Boolean function446

that tells whether there exist points of the continuous state447

xc�k that belong to the configuration region or not.448

3) A configuration-enabling set T e
�k
that indicates which449

transition(s) is (are) enabled in the configuration region.450

A configuration �k is hence defined by a tuple ���k
� δ�k

� T e
�k

).451

Definition 5 �Configuration Region): At time step k and for452

continuous vector xc�k, consider for every i = 1� . . . � nc a unit
4453

vector �i of size nT + 1. {�1� . . . ��nc
} form a set of pro-454

jection vectors that extract a combination of transition partial455

guards, one per continuous dimension. Then, a configuration456

region is the volume defined by457

��k
=

�
�k�[1�.]�1� . . . ��k�[nc�.]�nc

�T
(6)

where �k�[i�.] yields the ith line of matrix �k.458

Using bounds of the conditional domain, we write the con-459

figuration region’s frontier as the lowermost and uppermost460

vertices of the region’s hyperrectangle. They are given by461

�Ck
=

�
�k�[1�.]�1� . . . ��k�[nc�.]��nc

�T

∪
�
�k�[1�.]�1� . . . ��k�[nc�.]�nc

�T
. (7)

Different configuration regions may overlap. A consequence is462

that some configurations may be subsumed by some set of other463

configurations and then be left aside. In example 2, any region464

obtained with �1 =

�
0
0
1

�

and/or �2 =

�
0
1
0

�

is subsumed by465

regions obtained with other vectors. By extension, we say that466

a configuration �i is subsumed by a configuration �j when the467

3We enforce the term “split” over the term “partition” to acknowledge the
possibly overlapping regions of the conditional domain.
4Here, a vector in which a single element is 1 and all the others are 0.

enabling set of �i is also enabled by �j , i.e., T
e
�i
⊆ T e

�j
, and 468

the configuration region of the second is included in that of the 469
first, i.e., �Cj

⊂ �Ci
. However, mostly, this is a byproduct of the 470

formulation. In practice, such configurations are easily avoided 471
(see Section III-C). 472

Definition 6 �Configuration Function): At time step k and 473
for continuous vector xc�k, the configuration function δ�k

of 474
the hybrid system H is a Boolean function from xc�k → {0� 1} 475
given by 476

δ�k
=

�
1� if ��k

∩ xc�k �= ∅
0� otherwise.

(8)

When δ�k
= 1, the configuration region ��k

(and by extension, 477
the configuration �k itself) is said to be enabled. Checking xc�k 478

against the configuration regions of the grid, hence, allows one 479
to determine which transition(s) are enabled at time step k. 480

Definition 7 �Configuration-Enabling Set): The 481
configuration-enabling set T e

�k
is the set of transitions τ j 482

whose guards are such that φj���k
∩ xc�k) = 1. It is empty 483

whenever δ�k
= 0. 484

Example 2 �Continued): Assume that xc�k is a box [see 485
Fig. 2(c)]. This example has four not subsumed configurations 486

�
�p)
k , p = 1� . . . � 4. They are defined by the following. 487

1) Configuration regions: �
�
�1)

k

=[�k�[1�.]�1��k�[2�.]�2]
T = 488

�x̃0
c�k)T obtained with �1 = �2 =

�
1
0
0

�

; �
�
�2)

k

= �]−∞� 489

g1
1�k]� ]−∞� g2

2�k
[)T obtained with �1 =

�
0
1
0

�

and �2 = 490

�
1
0
0

�

; �
�
�3)

k

= �]g1
1�k�+∞[� [g2

2�k
�+∞[)T obtained with 491

�1 =

�
1
0
0

�

and �2 =

�
0
0
1

�

; and �
�
�4)

k

= �]−∞� g1
1�k]� 492

[g2
2�k

�+∞[)T obtained with �1 =

�
0
1
0

�

and �2 =

�
0
0
1

�

. 493

2) Configuration functions δ
�
�p)

k

, p = 1� . . . � 4 with δ
�
�1)

k

= 494

δ
�
�2)

k

= 0 and δ
�
�3)

k

= δ
�
�4)

k

= 1. 495

3) Configuration-enabling sets: T e

�
�1)

k

= T e

�
�2)

k

= ∅; T e

�
�3)

k

= 496

{τ2}; T e

�
�4)

k

= {τ1� τ2}: the situation is nondeterministic 497

since τ1 and τ2 are simultaneously enabled. 498

C. Condition Variables 499

Configurations relate subregions of the continuous space to 500
the enabling of transitions, which are discrete events. Thus, con- 501
figurations are a natural articulation between the continuous and 502
discrete dynamics. However, at this stage of the formulation, 503
configurations have not yet been directly related to the modes. 504
The difficulty is that one mode may be consistent with several 505

configurations of the hybrid system. Thus, in the thermostat 506
example, the on mode is consistent with both x ∈]−∞� xmin] 507
and x ∈]xmin� xmax[. The opposite is also true since one 508
configuration may be consistent with several modes. In the 509
same example, modes on and off are both consistent with 510
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x ∈]xmin� xmax[. In the following, we show how to relate511

the configurations to the modes. The final aim is to give a512

formal basis for the estimation algorithm to circumvent the513

full enumeration of all possible combinations of modes and514

configurations. What is sought is thus an articulation of the515

configurations with the modes.516

The solution comes quite naturally. The idea is to reflect the517

enabled configurations at the discrete level. The enabled con-518

figurations can be expressed within the discrete state through519

a set of projection unit vectors: the �i that define the config-520

uration regions (6). However, relation (8) considers only those521

regions that intersect xc�k. The solution becomes finding the522

subset of vectors �i that define those configuration regions that523

satisfy (8) and including them into the discrete representation of524

the state.525

To differentiate them from other vectors, these unit solution526

vectors are noted as κi
d = [κi

d0� κ
i
d1� . . . � κ

i
dn�

]T for every i =527

1� . . . � nc. Every κi
dj has domain {0� 1}, and we refer to it as528

a conditional variable since it refers to which portion of the529

conditional domain does enable a configuration. κi
d is dubbed530

as a conditional vector.531

Definition 8 �Conditional Vectors): Given H and its con-532

tinuous state xc�k, the conditional vectors κ1
d� . . . �κ

nc

d are533

unit vectors such that [�k�[1�.]κ
1
d� . . . ��k�[nc�.]κ

nc

d ]T ∩ xc�k �=534

∅, i = 1� . . . � nc.535

Given xc�k as a box, there exist many different combinations536

of conditional vectors. Every combination extracts an enabled537

configuration from�k. Finally, we permit additional constraints538

among κi
d and other discrete variables of Xd to be specified in539

Q. This allows discrete variables other than modes to depend540

on the continuous state values. Additionally, configurations541

that are subsumed can be avoided. These configurations arise542

from conditional vectors that extract dimensions that are un-543

constrained by the condition functions of some transitions.544

Constraining the Boolean values of the associated condition545

variables eliminates these solution vectors. See the example546

below.547

Example 2 �Continued): Consider �k = [x̃0
c�k� x̃

1
c�k� x̃

2
c�k]548

defined earlier. x̃2
c1�k = x̃1

c2�k =]−∞�+∞[. Thus, any con-549

figuration region obtained with solution vectors κ1
d =

�
0
0
1

�

550

and/or κ2
d =

�
0
1
0

�

is subsumed. The constraints to exclude551

these solution vectors are in Q.552

Example 1 �Continued): Given xc = x and hence �k =553

[x̃0
k� x̃

1
k� x̃

2
k� x̃

3
k� x̃

4
k] defined earlier, the thermostat system uses554

one vector κd = [κd0� κd1� κd2� κd3� κd4]
T . Assuming that555

]xmin� xmax[⊆ xk, then κd =

�





1
0
0
0
0





,

�





0
1
0
0
0





,

�





0
0
1
0
0





,

�





0
0
0
1
0





, and556

�





0
0
0
0
1





 are the five conditional solution vectors such that �kκd ∩557

xk �= ∅.558

Conditional variables pave the way for the definition of a log- 559

ical configuration that articulates the continuous and discrete 560
states and dynamics. 561

D. Logical Configuration 562

What is referred to as a logical configuration is simply the 563
expression of a configuration at the discrete level. The useful 564
feature is that logical configurations directly relate to hybrid 565
system modes. 566

Definition 9 �Logical Configuration): Given a hybrid system 567

H and its continuous state xc�k at time step k, a logical 568
configuration of H is noted as the logical conjunction 569

∇δk = xm ∧

�


nc�

i=1

�


n��

j=0

�
κi

dj = ξj

�








where 570

ξj =

�
1� if κi

d is the jth unit vector
0� otherwise.

Example 2 �Continued): In Fig. 2(c), the system is in mode 571

m1. We have seen that �
�3)
k and �

�4)
k are enabled. The condi- 572

tional vectors of interest are thus κ1
d =

�
1
0
0

�

and κ2
d =

�
0
0
1

�

; 573

κ1
d =

�
0
1
0

�

and κ2
d =

�
0
0
1

�

, respectively. This leads to two 574

logical configurations ∇δ
�3)
k and ∇δ

�4)
k of the form ∇δ

�p)
k = 575

�xm = m1) ∧ [
�2

i=1[
�2

j=0�κ
i
dj = ξj)]]. 576

IV. HYBRID STATE ESTIMATION 577

Given a set of commands and observations at every time 578
step, the set-theoretic estimation of hybrid states consists of 579
predicting a set of hybrid state candidates and rejecting those 580
that do not predict the observations. In consequence, most 581
operations are concerned with prediction. The problem of 582
prediction is its cost, since many predicted states may end 583
up being rejected. It is thus essential to eliminate impossible 584
candidates as early as possible. Prediction consists of a loop at 585
each sampled time step: continuous prediction, discrete state 586
prediction, and continuous state transfer, until there are no 587
more enabled changes in the discrete dynamics. It follows that 588
early elimination of state candidates is possible at every loop 589
step. While continuous state elimination simply requires an 590
inclusion test of the observations, discrete state elimination 591
requires a full consistency check that is more demanding. 592
However, this task has connections with a set of techniques 593
referred to as the consistency-based approach to diagnosis [39]. 594
These techniques use the constraints in the models to limit 595
the state candidates to be considered [23], [40]. They can 596
prune out candidates at each step that standard filters would 597
keep in their set of estimates. In consequence, our algorithms 598
rely on these techniques to manage discrete state consistency. 599
To further mitigate the number of candidates, our estimation 600
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scheme shows how the modeling of uncertainty in a bounded601

form allows us to merge estimates with identical discrete state.602

This proves to be a decisive advantage of state estimation603

based on uncertain but bounded models over state estimation604

based on stochastic models. In addition, our estimator includes605

a procedure that estimates several fast successive switches in606

discrete dynamics in-between two sampled time steps. Here,607

again, a bounded uncertainty is key to allowing this feature.608

A. Hybrid State Prediction in Sampled Time609

1) Forward Time Prediction: A prediction of the hybrid610

state is obtained with a forward predictive operator [41].611

Definition 10 �Forward Time Prediction): The forward time612

prediction �Sl�k−1�
�

γ of a set Sl�k−1 of hybrid states at logical613

time step l and sampled time step k − 1 is the set of hybrid614

states that are reachable from Sl�k−1 by letting the sampled615

time progress over γ sampled steps. For a single hybrid state,616

sl�k−1 = �πl�xc�k−1), πl = �xm�l�xd�l)617

�sl�k−1�
�

1 =
�
sl�k =�πl�xc�k)|xc�k

= f�xc�k−1�uc�k−1�wc�k−1� xm�l)
�
(9)

and �Sl�k−1�
�

γ is the repetition of �Sl�k−1�
�

1 , γ times, over all618

sl�k−1 ∈ Sl�k−1.619

There are many ways for relation (9) to be efficiently com-620

puted. The difficulty is that the box xc�k keeps growing with the621

number of steps γ. This is because the rectangular approxima-622

tion at each step introduces an error that is reapproximated by623

successive steps and thus rapidly amplified. This phenomenon624

is known as the wrapping effect. In general, convex optimiza-625

tion techniques help mitigate this explosion of uncertainty. In626

the current implementation, interval numerical methods similar627

to those in [36] are used.628

While the mechanics of transition triggering are described629

later, here, it is enough to mention that two cases arise: 1)630

whenever no transition is enabled by the forward time predic-631

tion, then the observations ỹc�k can be used to prune impossible632

candidates; and 2) when a transition is enabled, observations633

cannot be used immediately since they may have been produced634

by a behavior that is different from that of the current mode and635

model. Case 1 corresponds to applying set-theoretic filtering636

techniques to forward time prediction. Linear and nonlinear637

filters have been described [30]–[33]. In the case of nonlinear638

systems, the produced bounded estimates can be approximated639

by a variety of geometrical shapes, ellipsoids [33], rectangles640

[30], [32], and polytopes [42]. These filters can be utilized to641

control the quality of the forward time prediction. In the fol-642

lowing, it is assumed that the produced shapes are rectangular643

boxes, but the approach can be extended to other shapes as644

well.5645

2) Forward Transition Prediction: A prediction of the dis-646

crete switches is obtained with a second forward predictive647

operator.648

5With the limitation that intersection with the grid of configurations may not
conserve certain shapes.

Definition 11 �Forward Transition Prediction): Given tran- 649
sition τ and a set of hybrid states Sl�k, the forward transition 650

prediction �Sl�k�
τ is the set of hybrid states that are reachable 651

from some state sl�k ∈ Sl�k by executing a transition τ . For 652
sl�k = �πl�xc�k), with πl = �xm�l�xd�l), if τ is enabled, then 653

�sl�k�
τ =

�
sl+1�k =

�
πl+1�x

�
c�k

�
|xm�l

τ
−→xm�l+1

and x
�
c�k = lτ �xc�k)

�
(10)

where πl+1 = �xm�l+1�xd�l+1) such that Q ∪ πl+1 is con- 654
sistent. 655

By consistent, we mean that xm�l+1 and xd�l+1 together 656
satisfy all the formulas in Q. 657

3) Hybrid State Prediction: The hybrid system prediction 658
over time alternates both forward operators. As seen earlier, 659
multiple transitions can simultaneously be enabled. This is due 660
to the fact that the box xc�k can span over several configuration 661
regions. A consequence is that different points of xc�k happen to 662
enable and trigger different transitions, thus leading the system 663

from its current state to different modes and states. Given a 664
forward time prediction, the aim of the estimation process is 665
to transfer each point of the continuous state at date �l� k) to 666
the possibly multiple mode(s) it belongs to at date �l + 1� k). 667
The solution is to produce a split of xc�k such that the produced 668
fragments fit the grid of configurations. The enabled transitions 669
can then trigger from such state fragments, and the forward 670
transition prediction yields the new set of modes of the system 671

along with the set of continuous estimates. 672

B. Hybrid Consistency Problems 673

Given a set of hybrid states Sl�k−1 at date �l� k − 1) and 674
the forward time prediction Sl�k = �Sl�k−1�

�

1 , the problem of 675
intersecting xc�k with the grid of configurations comes to the 676

finding of a split Pl�k = {s
�1)
l�k � . . . � s

�np)
l�k } such that for every 677

p = 1� . . . � np, �
�p)
k is a configuration, with x

�p)
c�k ⊆ ��p

, and 678

π
�p)
l ∪Q ∪∇δ

�p)
k is consistent. This is done in two steps. 679

Given a predicted hybrid state sl�k, xc�k is used to find �k 680

and the conditional vectors κi
d. Those vectors yield the logical 681

configurations∇δ
�p)
k that are consistent with sl�k. An initial set 682

of conditional vectors is easily obtained by iterating the con- 683
tinuous dimensions and checking whether �k intersects xc�k. 684
Further checking against Q yields the reduced set of logical 685
configurations that are possible under the set of qualitative con- 686
straints. Impossible configurations are eliminated. The second 687
step takes the remaining logical configurations and computes 688
the configuration regions out of the predicted xc�k. Recall that 689
every configuration region is shaped by a system of inequalities 690
over the condition functions gj

i in (5). These inequalities form a 691
constraint network among continuous variables. Therefore, the 692
change of one variable-bounded value often affects the range 693
of other variables. By iterating a constraint filtering process 694
over all continuous variables, the focus narrows down onto the 695
only possible continuous states. The double logical/continuous 696
formulation of configurations from Section III is key as it 697
permits the pruning of impossible estimates at both levels. 698
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Basically, the first pruning step takes place at a discrete level,699

and the second pruning step takes place at the continuous level.700

Information is passed through the logical configurations.701

1) Discrete State Consistency: Given a hybrid system H702

and a prediction sl�k = �πl�xc�k), then {�π
�p)
l �∇δ

�p)
k )}, p =703

1� . . . � np, are such that we have the following:704

1) They are consistent with Q705

π
�p)
l ∪Q ∪∇δ

�p)
k is consistent. (11)

2) π
�p)
l = �xm�l�x

�p)
d�l ), so that the mode estimate xm�l is that706

of sl�k, since no transition has triggered yet.707

The conditional vectors κi
d determine a set of logical con-708

figurations. A subset of those is selected by solving rela-709

tion (11). This can be done with a constraint satisfaction710

engine. Solutions to (11) are logical configurations along711

with discrete state estimates π
�p)
l . This operation is noted712

as {�π
�p)
l �∇δ

�p)
k )}p=1�...�np

= sat�sl�k� Q), where sat denotes713

the constraint satisfaction engine. In the present implementa-714

tion, the Boolean satisfaction engine described in [43] is used.715

A wide range of other techniques is applicable.716

2) Continuous State Consistency: Given a configuration717

�
�p)
k at the continuous level, the subregion x

�p)
c�k of xc�k that is718

consistent with the configuration region is given by719

x
�p)
c�k = xc�k ∩ �

�
�p)

k

. (12)

Computing x
�p)
c�k is more difficult than it seems. Recall that ���p)

k

720

is equal to [�k�[1�.]κ
1
d� . . . ��k�[nc�.]κ

nc

d ]T , where the κi
d’s are721

given by ∇δ
�p)
k . Every unit vector κi

d extracts a positive or722

negative subdomain from �k. Every subdomain is obtained by723

evaluating a condition function g
j
i , where j is given by the724

entry equal to 1 of unit vector κi
d. To satisfy (12), the points725

of the box x
�p)
c�k must satisfy all the condition functions that726

determine �
�
�p)

k

.727

However, a variable xci can be coupled with some other728

variables xci� through g
j
i . This means that tightening the bounds729

of xci has an effect on xci�’s bounds. This problem can be seen730

as the task of filtering a set of bounded variables xci with a set731

of inequalities over those same variables. Such a problem can732

be solved with a slightly revised version of standard filtering or733

branch-and-bound techniques. Indeed, in general, these tech-734

niques do not handle inequalities but only equality constraints735

[44]. The algorithmic solution in Table II is a variant of the736

constraint propagation system in [44] that handles inequalities.737

Prior to detailing the algorithm, admissibility and consistency738

are to be distinguished.739

1) A condition function g
j
i is said to be admissible for xc�k740

iff there exists at least a point of xc�k such that the741

inequality based on g
j
i �xc�k) is satisfied.742

2) xc�k is said to be consistent with g
j
i �xc�k) when the743

inequality based on g
j
i is satisfied for all points in xc�k.744

The algorithm in Table II finds x
�p)
c�k such that it is consistent745

with all of the condition functions gj
i that determine �

�
�p)

k

. The746

algorithm constrains all the variables that appear in the con-747

TABLE II
FINDING CONSISTENT CONTINUOUS STATES: filter�∇δ

�p)
k

�xc�k)

TABLE III
SPLITTING THE CONTINUOUS SPACE: split��l�k)

dition functions g
j
i drawn from an input logical configuration 748

∇δ
�p)
k . It does so until each condition function is either satisfied 749

or inadmissible. The operator described by the algorithm is 750

dubbed filter�∇δ
�p)
k �xc�k). Its result is a continuous state 751

fragment x
�p)
c�k. 752

C. Splitting the Hybrid State With Configurations 753

The operator that articulates sat and filter, i.e., the discrete 754
and continuous consistency operators, respectively, is referred 755
to as split. split applies to a set Sl�k of hybrid states and returns 756
another set Pl�k (see Table III). The algorithm takes a predicted 757
hybrid state sl�k as input. 758

Example 2 �Continued): Starting from the configurations 759
obtained in Fig. 2(c), Fig. 3(a) and (b) shows the split of 760

the continuous space for enabled configurations �
�3)
k and �

�4)
k , 761

respectively. The logical configurations are ∇δ
�3)
k and ∇δ

�4)
k 762

defined earlier. The filter operator applied to each configura- 763
tion reduces xc�k by using partial guard g1

1 (step 5, Table II). 764
In both cases, evaluating g2

2�xc�k) does not further reduce xc�k. 765

The results are then x
�3)
c�k and x

�4)
c�k. 766
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Fig. 3. Example 2. (a) and (b) Continuous state split. On (b), note that the configuration domain has changed: the split with g1
1�k

affects the value of g2
2�k
.

The dotted line shows the previous boundary. (c), (d), and (e) Enclosure and switches according to T e

�
�3)

k

= {τ2} and T e

�
�4)

k

= {τ1� τ2}. Only the late switch

is represented. �
�3)
l+1�k

= enclose�τ2� �
�3)
l�k

), �
�4)
l+1�k

= enclose�τ1� �
�4)
l�k

), and �
�5)
l+1�k

= enclose�τ2� �
�4)
l�k

). (f) Merging step. The estimates obtained in (c)

and (e) have identical mode m3. In consequence, their continuous estimates can be merged. (a) Split with configuration �
�3)
k
. (b) Split with configuration �

�4)
k
.

(c) Triggering of τ2 from �
�3)
k
. (d) Triggering of τ1 from �

�4)
k
. (e) Triggering of τ2 from �

�4)
k
. (f) Merging of (c) and (e).

In all cases, remark that the union of the continuous state767

fragments yields the originally predicted state. That is, the x
�p)
c�k,768

p = 1� . . . � np, that result from the split of a state xc�k are such769

that
�np

p=1 x
�p)
c�k = xc�k. Formally, this is because the conditional770

domain �k of xc�k contains the positive and negative subdo-771

mains x̃j
c�k and ¬x̃

j
c�k for all transitions τ

j . Therefore, the entire772

continuous state space is covered by configuration regions, and773

both xc�k ⊆
�np

p=1 �
�
�p)

k

and
�np

p=1 x
�p)
c�k =

�np

p=1����p)

k

) ∩ xc�k774

[from relation (12)] hold.775

However, the hybrid states produced by a split are rarely776

optimal: some hybrid states are, in fact, not reachable by the777

system. This is due to a lack of constraints between modes778

and conditional variables in logical configuration equations. In779

example 1, hybrid state sk = �xm = on ∧ xk) with xk ≥ xmax780

is unreachable but predicted at some point: the thermostat781

cannot be turned on, and the temperature can be over the upper782

threshold xmax. The problem is complex, as these configura-783

tions represent the so-calledmythical states [28], [45]–[47], i.e.,784

instantaneous states between normal states when a discontinu-785

ous change takes place. In a mythical state, the variables do786

not satisfy all of the system constraints. This happens to be787

the case of the state sk above, since a transition to the mode 788
off is enabled but has not triggered yet. The problem is that 789
it is not clear whether these states represent very short but real 790
instances, or whether they are artifacts of the representation and 791
reasoning procedures. For this reason, the split operator is said 792
to be complete but unsound. 793

D. Switching in Sampled Time 794

When the split is completed, some of the configuration- 795
enabling sets are not empty. The two final steps of the 796
estimation process are thus the triggering of the enabled tran- 797
sitions and the use of available observations. The triggering 798
of transitions at a sampled time raises the following two 799
problems. 800

1) A transition triggering is always considered a small 801
period of time after the real switch has occurred. A 802

consequence is that xc�k computed at time step k is not 803
guaranteed to capture the real behavior of the system. 804

2) Multiple successive switches may occur during a single 805
sampled time interval. 806
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TABLE IV
APPLIES TRANSITION τ ENABLED AT TIME STEP �l� k) : enclose�τ� �

�p)
l�k

)

1) Guaranteed Enclosure at Switching Points: The problem807

arises from the triggering of a transition in-between two sam-808

pled time steps. At time step k − 1, no transition is enabled.809

Prediction produces a set of hybrid states at time step k. The810

split operator applies and splits the continuous state according811

to candidate configurations. As a result, assume that some812

configurations are found to enable transitions at time step k,813

and consider an enabled transition τ . On the physical system,814

τ has triggered somewhere between sampled time steps k − 1815

and k. However, prediction proceeds by computing a late switch816

at time step k. Let xc�k� , k − 1 < k� ≤ k, be the continuous817

state at the unknown continuous time instant k�Ts at which818

the transition has triggered on the physical system and where819

k� ∈ �. In general, xc�k� �⊆ xc�k, so switching at k misses the820

transfer of some continuous regions.821

A solution is proposed to transfer the continuous state from822

one mode to another, which guarantees to capture the true823

behavior of the system. It computes an early switch at k − 1,824

in addition to the late switch at k. Under the assumption825

that the continuous evolution of the system is monotonous826

between two sampled time steps, unionizing the continuous827

vectors obtained from both switches yields an enclosure of828

the true physical state of the system. In practice, due to high829

sampling rates, the assumption above is realistic and found830

in another body of works [36]. Table IV details the operator831

enclose�τ� s
�p)
l�k ) that applies a transition τ to a state fragment832

s
�p)
l�k and transfers the continuous state from s

�p)
l�k to s

�p)
l+1�k. The833

algorithm returns s
�p)
l+1�k that is guaranteed to capture the true834

state of the system under the assumption above. The sole subtle835

operation of the algorithm is step 2, which virtually enables a836

switch at time step k − 1. This is required since τ cannot be837

enabled at time step k − 1, as if it were, it would have triggered838

at that time step. Therefore, τ has to be virtually enabled at839

k − 1. This is achieved by triggering τ from the union of x
�p)
c�k−1840

and the frontier �
�
�p)

k�1

of the configuration region that enables τ .841

Note that the algorithm requires working on a temporal window842

of at least two sampled time steps, and that both �
�
�p)

k�1

and843

x
�p)
c�k−1 must remain accessible in memory.844

Example 2 �Continued): Fig. 3(c)–(e) shows the triggering845

of the enabled transitions τ1 and τ2. On these figures, only the846

late switch is represented. We have s
�3)
l+1�k = enclose�τ2� s

�3)
l�k ),847

s
�4)
l+1�k = enclose�τ1� s

�4)
l�k ), and s

�5)
l+1�k = enclose�τ2� s

�4)
l�k ).848

TABLE V
switch�Sl�k) OPERATOR

TABLE VI
clear�Sl�k) OPERATOR

2) Multiple Successive Switches: When more than one 849
switch occurs between two sampled time steps, each switch 850
is successively predicted with the enclose operator. Operator 851
switch in Table V handles multiple switches in-between two 852
sampled time steps. The number of successive switches is noted 853
as ξ. At step 6, clear is the operator that prunes out the states 854
that do not intersect the observations (Table VI). At step 7, AQ1855

the operator merge optimizes the final partition by merging 856
hybrid states whenever this is possible. These two operators are 857
detailed in the two next paragraphs. A condition for switch 858

to terminate is that the hybrid system’s behavior excludes 859

infinitely many switches occurring in-between two sampled 860

time steps. Whenever this condition is fulfilled, the algorithm 861

in theory always terminates. In practice, however, the enclose 862

operator yields conservative bounds and adds up to the natural 863
nonconvergence of numerical uncertainty. In consequence, the 864
occurrence of infinitely many switches cannot be ruled out, but 865
a theoretical analysis is beyond the scope of this paper. 866

3) Recursive Estimation: Finally, the estimation of the 867
states of a hybrid system H is captured by a sequence ρ : 868
S0� . . . � Sl�k� . . . that verifies 869

S0 = switch �split ��Θ��0 )) (13)

Sl+ξ�k+γ = switch
�
split

�
�Sl�k�

�

γ

��
. (14)

Relation (13) initializes the hybrid states starting from the 870
system initial conditions Θ. The computation of the recursive 871
relation (14) alternates forward time and transition predictions 872
through splits and switches, and results in an updated set of 873
hybrid states every γ �= 0 sampled time steps. 874

E. Hybrid State Estimation 875

The clear operator prunes out all the state estimates sl�k 876

such that the prediction yc�k does not enclose the observations 877
ỹc�k, or that do not predict observations ỹd�k. Note that the 878
measurement noise is already taken into account in (3), so that 879
ỹc�k is a real-valued vector of �

ny . 880
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TABLE VII
Merge�Sl�k) OPERATOR

F. Merging Identical Discrete Estimates881

Most approaches to the estimation of hybrid states apply882

Bayesian belief updates to a stochastic hybrid system. These883

techniques have to deal with an exponential blowup in the884

number of possible hybrid states. We can witness a similar885

effect in our case since the switch operator generates a growing886

number of states at each time step. Adding up to the growing887

uncertainty that is due to the box approximation of the forward888

prediction operator, the growth rate of new state estimates889

rapidly increases. In general, this is the reason why modern es-890

timators simultaneously track several hybrid state hypotheses.891

However, inevitably, the number of states exponentially grows892

with time as more hypotheses become likely.893

The main advantage of our approach is that it permits the894

merging of similar trajectories without loss. Consider merging895

the uncertainty on two states s
�1)
l�k and s

�2)
l�k : the question is how896

to merge the two continuous vector estimates x
�1)
c�k and x

�2)
c�k. It897

is easily achieved by unionizing the variable estimated bounds.898

The sole condition for the merging is that the discrete states899

π
�1)
l�k and π

�2)
l�k are identical. The Merge operator is given by900

Table VII. When splits and switches augment the number of901

hybrid state estimates at each time step, the merging step does902

reduce this number substantially. In general, this allows the903

estimation procedure to mitigate the explosion of modes and to904

maintain a finite, almost constant, number of hybrid estimates.905

Example 2 �Continued): There are three estimates, which are906

represented in Fig. 3(c)–(e). In Fig. 3(c), τ2 has transferred907

the system state to s
�3)
l+1�k = �m3�x

�3)
c�k). In Fig. 3(d), τ1 has908

transferred the system state to s
�4)
l+1�k = �m2�x

�4)
c�k). In Fig. 3(e),909

τ2 has transferred the system state to s
�5)
l+1�k = �m3�x

�5)
c�k).910

s
�3)
l+1�k and s

�5)
l+1�k can then be merged. This is shown in Fig. 3(f).911

Merging the uncertainty is particularly efficient to counter the912

effects of the occurrence of multiple similar splits and switches,913

which are a consequence of the temporal uncertainty due to914

variable bounds. In general, the uncertainty on the continuous915

state translates into the occurrence of the same transition switch916

over several time steps. Such situations are common and lead to917

the production of many estimates with an identical discrete state918

within just a few time steps. Using a merge operator, it takes919

just a few more time steps to produce a single estimate instead.920

However, the actual implementation behind the
�
operation on921

line 3 of Table VII yields a conservative outer approximation922

of the merged estimates in the shape of a hypercube. This923

operation introduces an error, because, in general, the union924

of hypercubes does not yield a hypercube. In our example, the925

error is visible in Fig. 3(f).926

Fig. 4. Set-theoretic estimation of the hybrid state of a thermostat system
(Example 1). (Top figure) Mode estimation. (Middle figure) Temperature (in
Celsius). (Bottom figure) Temperature variation. All figures: X-axis is time.

Thus, in practice, the merging process enlarges the estimated 927
bounds and reduces the number of estimates. However, the 928
bounds remain guaranteed to enclose the true behavior of the 929
system. However, the additional error carried by the bounds 930
does affect the soundness of the estimator, which produces esti- 931
mates that would not be reachable otherwise. A consequence is 932
that in practice, our hybrid estimation process is complete but 933
unsound. 934

V. RESULTS 935

A preliminary version of the presented filter was imple- 936
mented in C++ as part of a hybrid system diagnosis platform. 937

A. Case Studies 938

Fig. 4 shows the result of a run on our thermostat example. In 939
addition to the thermostat example, the state estimation scheme 940
presented in this paper has been applied to the bi-tanks water 941
regulation system in [48]. This system maintains an outflow of 942
water to a virtual consumer. It models two water tanks, three 943
valves, and a pump. As such, the model totals 1350 possible 944
modes, each of which represents a combination of functional 945
modes for all components in the system. Results on running 946
our estimator on these two systems follow. 947

B. General Performances 948

We have studied the computation time of the estimate as well 949
as the number of state estimates maintained by our filter. The 950
results are reported in Figs. 5 and 6. Fig. 5 illustrates the double 951
advantage of state estimation based on models with bounded 952
uncertainty over Bayesian filtering. First, the highest number of 953
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Fig. 5. Number of estimates before and after the merging step. (Left) Thermostat. (Right) Bi-tanks. (Top curve) Hybrid estimates before merging. (Middle curve)
Continuous estimates before merging. (Lower curve) Hybrid estimates after merging.

Fig. 6. Computation time per sampled time step (in seconds). (Left) Thermostat. (Right) Bi-tanks.

Fig. 7. Relative growth of the bounded uncertainty �xc�k�/�xc�0� over time. (Left) Thermostat. (Right) Bi-tanks.

estimated hybrid states is before the merging step and remains954

low. For the bi-tanks, this number is around 70, that is, at955

worst 5% of all the possible states. Second, the merging step956

drastically reduces the total number of hybrid estimates down957

to five estimates in the worst case for the bi-tanks. It appears that958

the computation time is best correlated with the number of state959

estimates before the merging step is applied (see Fig. 6). Note960

that comparison with stochastic filters is not directly feasible.961

C. Uncertainty962

The discrete switches in a system’s dynamics have an effect963

on the number of state estimates. Based on the same runs as964

before, we aimed to elucidate the effect of bounded uncertainty 965
on state estimation. Since bounds do not converge, uncertainty 966
is expected to grow unconditionally with time. Fig. 7 reports 967
that the uncertainty is growing steadily, but is mitigated by 968
the switches in the continuous dynamics. This property is 969
explained by the switching mechanism presented in this paper. 970
Each switch can help decrease uncertainty in the continuous 971
state vector: by splitting the continuous state, a switch dis- 972
cards a subregion of the continuous state space. However, 973
the uncertainty grows again invariably until the next switch 974
occurs. 975

This behavior again contrasts with the stochastic hybrid 976
filters that can shift and focus a probability distribution around 977
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subregions of the continuous state space but cannot scale their978

number of estimates accordingly.979

VI. CONCLUSION980

This paper has presented a set-theoretic alternative to the981

estimation of hybrid systems. It has highlighted the benefits982

of the approach compared to the dominant estimation scheme983

that utilizes continuous probability distributions to represent984

uncertainty. At the core of this paper are the configurations and985

logical configurations that articulate the discrete and continuous986

knowledge levels and permit dedicated algorithms to prune987

impossible estimates at each level. Because bounds do not988

converge, and due to a conservative merging of estimates, the989

outer approximation of the continuous state is expected to990

grow unconditionally with time. Potential solutions include the991

application of aggressive optimization techniques that produce992

tighter bounds, and the use of more expressive geometrical993

shapes. In application to large systems, the computational994

burden of the next state expansion can prove prohibitive. As995

a solution, transition selection through sampling or forward996

search can be implemented as for stochastic hybrid filters at997

the cost of losing completeness. More research should concen-998

trate on bridging stochastic model-based estimators and their999

set-theoretic counterpart. In general, a pdf badly mixes with1000

bounded spaces. Thus, the uniform distribution proves unpro-1001

ductive, because it is not closed under standard operations.1002

However, some pieces of work have been produced [49], and1003

a comparison of stochastic and set-theoretic estimation proce-1004

dures for continuous systems can be found in [50]. This issue is1005

undoubtedly a promising research direction for the future.1006
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